A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbon Nanotube/Boron Nitride Nanocomposite as a Significant Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. | LitMetric

It is an immense challenge to develop bifunctional electrocatalysts for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) in low temperature fuel cells and rechargeable metal-air batteries. Herein, a simple and cost-effective approach is developed to prepare novel materials based on carbon nanotubes (CNTs) and a hexagonal boron nitride (h-BN) nanocomposite (CNT/BN) through a one-step hydrothermal method. The structural analysis and morphology study confirms the formation of a homogeneous composite and merging of few exfoliated graphene layers of CNTs on the graphitic planes of h-BN, respectively. Moreover, the electrochemical study implies that CNT/BN nanocomposite shows a significantly higher ORR activity with a single step 4-electron transfer pathway and an improved onset potential of +0.86 V versus RHE and a current density of 5.78 mA cm in alkaline conditions. Interestingly, it exhibits appreciably better catalytic activity towards OER at low overpotential (η=0.38 V) under similar conditions. Moreover, this bifunctional catalyst shows substantially higher stability than a commercial Pt/C catalyst even after 5000 cycles. Additionally, this composite catalyst does not show any methanol oxidation reactions that nullify the issues due to fuel cross-over effects in direct methanol fuel cell applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201604231DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
oxygen evolution
8
evolution reactions
8
oer low
8
carbon nanotube/boron
4
nanotube/boron nitride
4
nitride nanocomposite
4
nanocomposite bifunctional
4
bifunctional electrocatalyst
4
oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!