Background: DNA copy number alterations (CNAs) and gene expression changes have amply been encountered in colorectal cancers (CRCs), but the extent at which CNAs affect gene expression, as well as their relevance for tumor development, are still poorly defined. Here we aimed at assessing the clinical relevance of these parameters in a 10 year follow-up study.
Methods: Tumors and normal adjacent colon mucosa, obtained at primary surgery from 21 CRC patients, were subjected to (i) high-resolution array CGH (a-CGH) for the detection of CNAs and (ii) microarray-based transcriptome profiling for the detection of gene expression (GE) changes. Correlations between these genomic and transcriptomic changes and their associations with clinical and histopathological parameters were assessed with the aim to identify molecular signatures associated with disease-free survival of the CRC patients during a 10 year follow-up.
Results: DNA copy number gains were frequently detected in chromosomes 7, 8q, 13, 19, 20q and X, whereas DNA copy number losses were frequently detected in chromosomes 1p, 4, 8p, 15, 17p, 18, 19 and 22q. None of these alterations were observed in all samples. In addition, we found that 2,498 genes were up- and that 1,094 genes were down-regulated in the tumor samples compared to their corresponding normal mucosa (p < 0.01). The expression of 65 genes was found to be significantly associated with prognosis (p < 0.01). Specifically, we found that up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, were strongly associated with a poor survival. Subsequent integrated analyses revealed that increased expression levels of the MMP9, BMP7, UBE2C, I-CAM, NOTCH3, NOTCH1, PTGES2, HMGB1 and ERBB3 genes were associated with copy number gains, whereas decreased expression levels of the MUC1, E2F2, HRAS and SIRT3 genes were associated with copy number losses. Pathways related to cell cycle progression, eicosanoid metabolism, and TGF-β and apoptosis signaling, were found to be most significantly affected.
Conclusions: Our results suggest that CNAs in CRC tumor tissues are associated with concomitant changes in the expression of cancer-related genes. In other genes epigenetic mechanism may be at work. Up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, appear to be associated with a poor survival. These alterations may, in addition to Dukes' staging, be employed as new prognostic biomarkers for the prediction of clinical outcome in CRC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13402-016-0299-z | DOI Listing |
Mol Biol Rep
January 2025
State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
Background: Bacillus anthracis (B. anthracis), Yersinia pestis (Y. pestis), and Brucella spp.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Department of Chinese Materia Medica, Changchun Sci-Tech University, Changchun, PR China.
Hance is an important plant owing to its medicinal root and edible fruit, and extensively distributed in China. In this study, we reported the complete chloroplast genome of . The chloroplast genome was 156,335 bp in size with the overall GC content of 37.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
College of Pharmacy, Dali University, Dali, China.
, a significant folk medicinal plant, is utilized to treat a variety of ailments. In this study, we reported the complete chloroplast genome sequence of this species. The length of the complete chloroplast genome was 155,810 bp, included a pair of inverted repeat (IR) regions (26,340 bp), a large single-copy region (LSC, 84,853 bp), and a small single-copy region (SSC, 18,277 bp).
View Article and Find Full Text PDFFood Chem (Oxf)
June 2025
Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
The clear molecular characterization of genetically modified (GM) plants and animals is a prerequisite for obtaining regulatory approval and safety certification for commercial cultivation. This characterization includes the identification of the transferred DNA (T-DNA) insertion site, its flanking sequences, the copy number of inserted genes, and the detection of any unintended genomic alterations accompanying the transformation process. In this study, we performed a comprehensive molecular characterization of the well-known GM soybean event FG72 using paired-end whole-genome sequencing (PE-WGS).
View Article and Find Full Text PDFJ Toxicol Pathol
January 2025
Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China.
Acute kidney injury induced by stings from multiple wasps is a medical emergency and is a driving factor of acute renal dysfunction. Numerous studies have shown that mitochondrial reactive oxygen species (mtROS) play a key role in ischemia-reperfusion injury-, cisplatin-, and sepsis-induced acute kidney injury. However, the role of mtROS and its underlying mechanisms in wasp-venom-induced acute kidney injury remain inconclusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!