In vivo cardiomyocyte response to YTX- and AZA-1-induced damage: autophagy versus apoptosis.

Arch Toxicol

Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002, Lugo, Spain.

Published: April 2017

Yessotoxins (YTX) and azaspiracids (AZAs) are marine toxins produced by phytoplanktonic dinoflagellates that get accumulated in filter feeding shellfish and finally reach human consumers through the food web. Both toxin classes are worldwide distributed, and food safety authorities have regulated their content in shellfish in many countries. Recently, YTXs and AZAs have been described as compounds with subacute cardiotoxic potential in rats owed to alterations of the cardiovascular function and ultrastructural heart damage. These molecules are also well known in vitro inducers of cell death. The aim of this study was to explore the presence of cardiomyocyte death after repeated subacute exposure of rats to AZA-1 and YTX for 15 days. Because autophagy and apoptosis are often found in dying cardiomyocytes, several autophagic and apoptotic markers were determined by western blot in heart tissues of these rats. The results showed that hearts from YTX-treated rats presented increased levels of the autophagic markers microtubule-associated protein light chain 3-II (LC3-II) and beclin-1, nevertheless AZA-1-treated hearts evidenced increased levels of the apoptosis markers cleaved caspase-3 and -8, cleaved PARP and Fas ligand. Therefore, while YTX-induced damage to the heart triggers autophagic processes, apoptosis activation occurs in the case of AZA-1. For the first time, activation of cell death signals in cardiomyocytes is demonstrated for these toxins with in vivo experiments, which may be related to alterations of the cardiovascular function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-016-1862-0DOI Listing

Publication Analysis

Top Keywords

alterations cardiovascular
8
cardiovascular function
8
cell death
8
increased levels
8
vivo cardiomyocyte
4
cardiomyocyte response
4
response ytx-
4
ytx- aza-1-induced
4
aza-1-induced damage
4
damage autophagy
4

Similar Publications

The associations between prenatal plastic phthalate exposure and lipid acylcarnitine levels in humans and mice.

Reprod Toxicol

January 2025

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia. Electronic address:

Phthalates are ubiquitous environmental pollutants known for their endocrine-disrupting properties, particularly during critical periods such as pregnancy and early childhood. Phthalates alter lipid metabolism, but the role of prenatal exposure on the offspring lipidome is less understood. In particular, we focused on long chain acylcarnitines - intermediates of fatty acid oxidation that serve as potential biomarkers of mitochondrial function and energy metabolism.

View Article and Find Full Text PDF

Saturated fat has been linked to cardiovascular diseases, leading to an increase in polyunsaturated fat consumption. The aim of the present study was to investigate the effects of three fat sources (coconut oil, lard and soybean oil) on metabolic and reproductive parameters in heterogenic mice. Female Swiss mice (5-6 weeks old; n=9/group) were divided into four experimental groups: control (CC), coconut oil (CO), lard (LA), and soybean oil (SO), and were orally given 0.

View Article and Find Full Text PDF

Background: Cardiopulmonary exercise tests (CPETs) measure cardiovascular exercise response. Altitude alters exercise parameters, so standard normative datasets (Cooper, Bruce, Burstein) may not accurately predict exercise parameters for data collected at moderate altitude. This study aimed to: 1) establish modern normative exercise values for children/adolescents at moderate altitude and 2) compare these values against the Cooper, Burstein and Bruce models.

View Article and Find Full Text PDF

Methylglyoxal compromises callus mineralization and impairs fracture healing through suppression of osteoblast terminal differentiation.

Biochem Biophys Res Commun

January 2025

Department of Pharmacology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan. Electronic address:

Impaired fracture healing in diabetic patients leads to prolonged morbidity and increased healthcare costs. Methylglyoxal (MG), a reactive metabolite elevated in diabetes, is implicated in various complications, but its direct impact on bone healing remains unclear. Here, using a non-diabetic murine tibial fracture model, we demonstrate that MG directly impairs fracture healing.

View Article and Find Full Text PDF

Although the corticosteroid betamethasone is routinely administered to accelerate lung and cardiovascular maturation in the preterm fetus prior to birth, and use of delayed cord clamping (DCC) is recommended at birth by professional bodies, it is unknown whether antenatal betamethasone alters perinatal pulmonary or systemic arterial blood flow accompaniments of DCC. To address this issue, preterm fetal lambs [gestation 127 (1) days, term = 147 days] with (n = 10) or without (n = 10) antenatal betamethasone treatment were acutely instrumented under general anaesthesia with flow probes to obtain left (LV) and right ventricular (RV) outputs, major central arterial blood flows and shunt flow across both the ductus arteriosus and foramen ovale (FO). After delivery, lambs underwent initial ventilation for 2 min prior to DCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!