AI Article Synopsis

  • Biodiversity hotspots with high human populations require conservation management that goes beyond just protecting pristine habitats, focusing instead on improving connectivity between fragmented habitats to reduce species extinction risks.
  • A novel individual-based modeling platform was used to assess different management strategies for conserving forest birds, revealing that increasing habitat area led to the most significant population growth, but the effectiveness varied based on spatial planning.
  • The study highlights that adding small habitat patches can complicate conservation efforts by creating 'dispersal sinks' while improving matrix connectivity with stepping stones can enhance dispersal success for smaller patches, emphasizing the need for realistic modeling of dispersal behaviors in conservation planning.

Article Abstract

As biodiversity hotspots are often characterized by high human population densities, implementation of conservation management practices that focus only on the protection and enlargement of pristine habitats is potentially unrealistic. An alternative approach to curb species extinction risk involves improving connectivity among existing habitat patches. However, evaluation of spatially explicit management strategies is challenging, as predictive models must account for the process of dispersal, which is difficult in terms of both empirical data collection and modelling.Here, we use a novel, individual-based modelling platform that couples demographic and mechanistic dispersal models to evaluate the effectiveness of realistic management scenarios tailored to conserve forest birds in a highly fragmented biodiversity hotspot. Scenario performance is evaluated based on the spatial population dynamics of a well-studied forest bird species.The largest population increase was predicted to occur under scenarios increasing habitat area. However, the effectiveness was sensitive to spatial planning. Compared to adding one large patch to the habitat network, adding several small patches yielded mixed benefits: although overall population sizes increased, specific newly created patches acted as dispersal sinks, which compromised population persistence in some existing patches. Increasing matrix connectivity by the creation of stepping stones is likely to result in enhanced dispersal success and occupancy of smaller patches. . We show that the effectiveness of spatial management is strongly driven by patterns of individual dispersal across landscapes. For species conservation planning, we advocate the use of models that incorporate adequate realism in demography and, particularly, in dispersal behaviours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042109PMC
http://dx.doi.org/10.1111/1365-2664.12643DOI Listing

Publication Analysis

Top Keywords

dispersal models
8
conservation planning
8
modelling platform
8
management scenarios
8
biodiversity hotspot
8
dispersal
6
management
5
population
5
patches
5
realistic dispersal
4

Similar Publications

The new submarine volcano Fani Maoré offshore Mayotte (Comoros archipelago) discovered in 2019 has raised the awareness of a possible future eruption in Petite-Terre island, located on the same 60 km-long volcanic chain. In this context of a renewal of the volcanic activity, we present here the first volcanic hazard assessment in Mayotte, focusing on the potential reactivation of the Petite-Terre eruptive centers. Using the 2-D tephra dispersal model HAZMAP and the 1979 - 2021 meteorological ERA-5 database, we first identify single eruptive scenarios of various impacts for the population of Mayotte.

View Article and Find Full Text PDF

Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels.

View Article and Find Full Text PDF

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

What little we know about how microbiomes change over the course of host dispersal has been gleaned from simulations or snapshot sampling of microbiomes of hosts undertaking regular, cyclical migrations. These studies suggest that major changes in both microbiome richness and turnover occur in response to long-distance movements, but we do not yet know how rare or sporadic dispersal events for non-migratory organisms might affect the microbiomes of their hosts. Here we directly examine the microbiomes of rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and oceanographic modelling to study the impacts of ecological dispersal of hosts on their microbiomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!