The Nxf1 protein is a major nuclear export receptor for the transport of mRNA, and it also is essential for export of retroviral mRNAs with retained introns. In the latter case, it binds to RNA elements known as constitutive transport elements (CTEs) and functions in conjunction with a cofactor known as Nxt1. The NXF1 gene also regulates expression of its own intron-containing RNA through the use of a functional CTE within intron 10. mRNA containing this intron is exported to the cytoplasm, where it can be translated into the 356-amino acid short Nxf1(sNxf1) protein, despite the fact that it is a prime candidate for nonsense-mediated decay (NMD). Here we demonstrate that sNxf1 is highly expressed in nuclei and dendrites of hippocampal and neocortical neurons in rodent brain. Additionally, we show that sNxf1 localizes in RNA granules in neurites of differentiated N2a mouse neuroblastoma cells, where it shows partial colocalization with Staufen2 isoform SS, a protein known to play a role in dendritic mRNA trafficking. We also show that sNxf1 forms heterodimers in conjunction with the full-length Nxf1 and that sNxf1 can replace Nxt1 to enhance the expression of CTE-containing mRNA and promote its association with polyribosomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5170612 | PMC |
http://dx.doi.org/10.1091/mbc.E16-07-0515 | DOI Listing |
J Neurosci
January 2025
Department of Integrative Anatomy, Nagoya City University Graduate School of Medicinal Sciences.
Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.
View Article and Find Full Text PDFNature
January 2025
Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA.
Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories. Although there have been advances in modelling spatial representations in the hippocampus, we lack good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory.
View Article and Find Full Text PDFJ Neurosci
January 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102.
We aimed to identify the neuronal correlates of performance errors in a difficult timing task. Male rats were trained to seek ewards and avoid hocks depending on the position of photic conditioned stimuli (CS- and CS-, respectively). Then, they were exposed to conflict trials where they had to time the interval between the CS-R and CS-S to obtain rewards while avoiding footshocks.
View Article and Find Full Text PDFAdults are capable of either differentiating or integrating similar events in memory based on which representations are optimal for a given situation. Yet how children represent related memories remains unknown. Here, children (7-10 years old) and adults formed memories for separate yet overlapping events.
View Article and Find Full Text PDFTwo key series of discoveries about the hippocampus are described. One is the discovery of hippocampal spatial view cells in primates. This discovery opens the way to a much better understanding of human episodic memory, for episodic memory prototypically involves a memory of where people or objects or rewards have been seen in locations "out there" which could never be implemented by the place cells that encode the location of a rat or mouse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!