Objective: The aim of this laboratory study was to evaluate the horizontal and vertical effects of the polymerization shrinkage of three-unit temporary fixed dental prostheses (FDPs) on the position of the prepared teeth. In addition, the reduction of these effects by using different fabrication techniques was evaluated.
Methods: A total of 192 temporary FDPs were fabricated using one methacrylate (MA) and two dimethacrylate (DMA) materials. Each material group (n=64) was divided into two groups according to the fabrication methods (M1: curing on the prepared teeth, M2: curing in a silicone mold). Each fabrication group was divided into four subgroups (n=8) according to the relining method used (B: no relining, S: spacer foil 300μm, DG: grinding-out with 500μm cutting depth, and FG: free grinding). The experimental apparatus consisted of two abutment teeth lowered at right angles into a silicone mold. One prepared tooth was embedded in silicone to simulate the periodontium and permit slight horizontal tooth movement. The dimensional changes were recorded with an optical microscope. The test images were superimposed and measured using image analysis software.
Results: The statistical analysis showed that there were significantly higher horizontal changes for the MA than the DMA resins in M1, while there was none in M2. Regarding the vertical changes, there were significant differences between the baseline group and all relining and fabrication groups in all materials.
Significance: Relining of directly fabricated temporary FDPs significantly reduces the effect of polymerization shrinkage and thus secures the position of the prepared teeth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2016.09.020 | DOI Listing |
J Occup Environ Hyg
January 2025
Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Cincinnati, Ohio.
Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia.
Interocclusal records (IORs) created with bite registration materials (BRMs) accurately reflect the opposing teeth's physiological and anatomical associations in digital and traditional dentistry. This study assessed the linear dimensional accuracy of vinyl polysiloxane-based scannable and transparent BRMs over obligatory clinical time intervals (1, 24, 72, and 168 h/s). A total of 3 scannable [Flexitime Bite, Occlufast CAD, Virtual CADBite] and 3 transparent [Maxill Bite, Charmflex Bite, Defend ClearBite] VPS-based BRMs were divided into 28 subgroups by time interval: 1, 24, 72, and 168 h/s.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin, China. Electronic address:
Objective: This study aims to investigate adhesive damage caused by the synergistic effects of polymerization shrinkage and occlusal forces via finite element analysis (FEA), based on damage mechanics with the cohesive zone model (CZM). The objective is to obtain the adhesive damage distribution and investigate how the material properties of resin composite impact adhesive damage.
Methods: A 3D reconstruction model of an mandibular first molar was constructed through CBCT imaging, and a Class V cavity was prepared using computer-aided engineering (CAE) software.
BMC Cancer
January 2025
Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Province, 530021, China.
Background And Objective: In clinical practice, CK19 can be an important predictor for the prognosis of HCC. Due to the high incidence and mortality rates of HCC, more effective and practical prognostic prediction models need to be developed urgently.
Methods: A total of 1,168 HCC patients, who underwent radical surgery at the Guangxi Medical University Cancer Hospital, between January 2014 and July 2019, were recruited, and their clinicopathological data were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!