One in 12 people worldwide suffers from diabetes and more than 90% of affected adult individuals are diagnosed with type 2 diabetes mellitus (T2DM). Obesity adds to the personal risk to develop T2DM, and both metabolic diseases are rampantly increasing worldwide. Over recent years, primary cilia have moved into the focus of basic and clinical research, after several human diseases have been identified as ciliopathies (i.e., they are linked to ciliary dysfunction). A subset of ciliopathies presents with obesity and diabetes, either as core symptoms or major complications. Several studies have shown a role for ciliary signaling in the satiety signaling centers of the hypothalamus and in other metabolically active tissues, such as pancreatic islets. Here, we discuss recent advances and perspectives in ciliary metabolic research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nyas.13216 | DOI Listing |
Sci Transl Med
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
Sci Robot
January 2025
Biorobotics Laboratory, Soft Robotics Research Center, Institute of Advanced Machines and Design, Department of Mechanical Engineering, Institute of Engineering, Seoul National University, Seoul, Republic of Korea.
Snap-through, a rapid transition of a system from an equilibrium state to a nonadjacent equilibrium state, is a valuable design element of soft devices for converting a monolithic stimulus into systematic responses with impulsive motions. A common way to benefit from snap-through is to embody it within structures and materials, such as bistable structures. Torque-reversal mechanisms discovered in nature, which harness snap-through instability via muscular forces, may have comparative advantages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.
View Article and Find Full Text PDFFront Neurosci
January 2025
Michael Sars Centre, University of Bergen, Bergen, Norway.
Comparative studies on the development of nervous systems have a significant impact on understanding animal nervous system evolution. Nevertheless, an important question is to what degree neuronal structures, which play an important role in early stages, become part of the adult nervous system or are relevant for its formation. This is likely in many direct developers, but it is not the case in forms with catastrophic metamorphosis.
View Article and Find Full Text PDFBio Protoc
January 2025
ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.
The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!