Neonates form a unique cohort with distinct features associated with the hemostatic system compared with older children and adults. The development of the human hemostatic system begins around 10 weeks in utero and continues to evolve during childhood. This dynamic period termed developmental hemostasis should be taken into consideration when diagnosing a neonate with disorders of bleeding or thrombosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0036-1593415 | DOI Listing |
Clin Proteomics
January 2025
Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 1, 00168, Rome, Italy.
Our objective is to determine the protein and complements constituents of Cord blood Platelet-rich plasma (CB-PRP), based on the hypothesis that it contains beneficial components capable of arresting or potentially decelerating the advancement of atrophic age-related macular degeneration (dry-AMD), with the support of radiomics. Two distinct pools of CB-PRP were assessed, each pool obtained from a total of 15 umbilical cord-blood donors. One aliquot of each pool respectively was subjected to proteomic analysis in order to enhance the significance of our findings, by identifying proteins that are shared between the two sample pools and gaining insights into the pathways they are associated with.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea.
Marine and terrestrial organisms often utilise EGF/EGF-like domains in wet adhesives, yet their roles in adhesion remain unclear. Here, we investigate the Barbatia virescense byssal system and uncover an oxidation-independent, reversible, and robust adhesion mechanism where EGF/EGF-like domain tandem repetitions in adhesive proteins bind robustly to GlcNAc-based biopolymer. EGF/EGF-like-domain-containing proteins demonstrate over three-fold superior underwater adhesion to chitosan compared to the well-known strongest wet-adhesive proteins, mefp-5, and suckerin, when adhering to mica in an surface forces apparatus-based measurement.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
Celosia argentea is a plant known for producing bioactive compounds, including betalains, which possess various biological and pharmaceutical properties. This study aimed to investigate the effect of biotic and abiotic elicitors on betalains production and their antioxidant activity in cell suspension cultures of C. argentea.
View Article and Find Full Text PDFJ Thromb Haemost
December 2024
Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Background: Therapeutic plasma exchange (TPE) is the primary intervention for treating symptomatic hyperviscosity from hypergammaglobulinemia, yet its efficacy for treating hyperviscosity related to hyperfibrinogenemia is unclear.
Objective: Define the safety and efficacy of TPE for critically ill COVID-19 patients with elevated blood viscosity from hyperfibrinogenemia.
Method: A prospective, randomized controlled trial in critically ill COVID-19 patients at a single US healthcare system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!