Black phosphorus has been recently suggested as a very promising material for use in 2D field-effect transistors. However, due to its poor stability under ambient conditions, this material has not yet received as much attention as for instance MoS. We show that the recently demonstrated AlO encapsulation leads to highly stable devices. In particular, we report our long-term study on highly stable black phosphorus field-effect transistors, which show stable device characteristics for at least eight months. This high stability allows us to perform a detailed analysis of their reliability with respect to hysteresis as well as the arguably most important reliability issue in silicon technologies, the bias-temperature instability. We find that the hysteresis in these transistors depends strongly on the sweep rate and temperature. Moreover, the hysteresis dynamics in our devices are reproducible over a long time, which underlines their high reliability. Also, by using detailed physical models for oxide traps developed for Si technologies, we are able to capture the channel electrostatics of the black phosphorus FETs and determine the position of the defect energy band. Finally, we demonstrate that both hysteresis and bias-temperature instabilities are due to thermally activated charge trapping/detrapping by oxide traps and can be reduced if the device is covered by Teflon-AF.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.6b04814DOI Listing

Publication Analysis

Top Keywords

black phosphorus
16
field-effect transistors
12
phosphorus field-effect
8
highly stable
8
oxide traps
8
long-term stability
4
reliability
4
stability reliability
4
black
4
reliability black
4

Similar Publications

Recovery in soil carbon stocks but reduced carbon stabilization after near-natural restoration in degraded alpine meadows.

Sci Rep

December 2024

Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.

Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).

View Article and Find Full Text PDF

Enantioselective Synthesis of Chiral β-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation.

J Am Chem Soc

December 2024

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

Compared with chiral β-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β-amino phosphorus derivatives from -β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee).

View Article and Find Full Text PDF

Secondary Transport Mechanisms in Amino Acid Fed Enhanced Biological Phosphorus Removal.

Chemosphere

December 2024

Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, New Mexico, 87131, United States. Electronic address:

Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability.

View Article and Find Full Text PDF

Cadmium (Cd) accumulation in rice poses significant risks to human health. The Cd accumulation levels vary widely among cultivars and are strongly associated with the rhizosphere microecosystem. However, the underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Calcidiol (25(OH)VD) and calcitriol (1α,25(OH)VD) are active vitamin D with high medicinal value, which can maintain calcium and phosphorus balance and treat vitamin D deficiency. Microbial synthesis is an important method to produce high-value-added compounds. It can produce active vitamin D through the hydroxylation reaction of P450, which can reduce the traditional chemical synthesis steps, and greatly improve the production efficiency and economic benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!