Utilizing an innovative combination of scanning-probe and spectroscopic techniques, supported by first-principles calculations, we demonstrate how electron-beam exposure of field-effect transistors, implemented from ultrathin molybdenum disulfide (MoS), may cause nanoscale structural modifications that in turn significantly modify the electrical operation of these devices. Quite surprisingly, these modifications are induced by even the relatively low electron doses used in conventional electron-beam lithography, which are found to induce compressive strain in the atomically thin MoS. Likely arising from sulfur-vacancy formation in the exposed regions, the strain gives rise to a local widening of the MoS bandgap, an idea that is supported both by our experiment and by the results of first-principles calculations. A nanoscale potential barrier develops at the boundary between exposed and unexposed regions and may cause extrinsic variations in the resulting electrical characteristics exhibited by the transistor. The widespread use of electron-beam lithography in nanofabrication implies that the presence of such strain must be carefully considered when seeking to harness the potential of atomically thin transistors. At the same time, this work also promises the possibility of exploiting the strain as a means to achieve "bandstructure engineering" in such devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.6b05952DOI Listing

Publication Analysis

Top Keywords

electron-beam exposure
8
first-principles calculations
8
electron-beam lithography
8
atomically thin
8
nanoscale-barrier formation
4
formation induced
4
induced low-dose
4
electron-beam
4
low-dose electron-beam
4
exposure ultrathin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!