AI Article Synopsis

  • * RNA simulation models are less developed than protein models, leading to a surge in revisions to RNA force fields without a universal 'best' option currently available.
  • * RNA biochemists must choose the most suitable force field for their needs while understanding its strengths and weaknesses, which can ultimately inform better experimental designs and data collection for improved RNA models.

Article Abstract

Molecular simulations have become an essential tool for biochemical research. When they work properly, they are able to provide invaluable interpretations of experimental results and ultimately provide novel, experimentally testable predictions. Unfortunately, not all simulation models are created equal, and with inaccurate models it becomes unclear what is a bona fide prediction versus a simulation artifact. RNA models are still in their infancy compared to the many robust protein models that are widely in use, and for that reason the number of RNA force field revisions in recent years has been rapidly increasing. As there is no universally accepted 'best' RNA force field at the current time, RNA simulators must decide which one is most suited to their purposes, cognizant of its essential assumptions and their inherent strengths and weaknesses. Hopefully, armed with a better understanding of what goes inside the simulation 'black box,' RNA biochemists can devise novel experiments and provide crucial thermodynamic and structural data that will guide the development and testing of improved RNA models. WIREs RNA 2017, 8:e1396. doi: 10.1002/wrna.1396 For further resources related to this article, please visit the WIREs website.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wrna.1396DOI Listing

Publication Analysis

Top Keywords

rna force
12
rna
8
rna models
8
force field
8
models
5
advances rna
4
rna molecular
4
molecular dynamics
4
dynamics simulator's
4
simulator's guide
4

Similar Publications

Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy.

J Chromatogr A

January 2025

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:

Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.

View Article and Find Full Text PDF

Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.

View Article and Find Full Text PDF

[microRNAs: regulators of metamorphosis in insects].

Biol Aujourdhui

January 2025

Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France.

In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis.

View Article and Find Full Text PDF

Background: Respiratory viral infections are a major public health challenge and the most diagnosed medical condition, particularly for individuals living in close proximity, like military personnel. We compared the sensitivity and specificity of the Biomeme Franklin and Truelab RT-PCR thermocyclers to determine which platform is more sensitive and specific at detecting SARS-CoV-2 and influenza A and B viruses.

Methodology: RNA extracted from nasopharyngeal swabs of infected and uninfected individuals was tested on the Biomeme Franklin at Lackland and the Truelab at Wright Patterson Air Force bases.

View Article and Find Full Text PDF

Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy.

Int J Mol Sci

January 2025

State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.

Long non-coding RNAs (lncRNAs) play a pivotal role in regulating gene expression and are critically involved in the progression of malignant brain tumors, including glioblastoma, medulloblastoma, and meningioma. These lncRNAs interact with microRNAs (miRNAs), proteins, and DNA, influencing key processes such as cell proliferation, migration, and invasion. This review highlights the multifaceted impact of lncRNA dysregulation on tumor progression and underscores their potential as therapeutic targets to enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!