Objective: To evaluate whether and to which extent skin redness (erythema) affects investigator blinding in transcranial direct current stimulation (tDCS) trials.

Material And Methods: Twenty-six volunteers received sham and active tDCS, which was applied with saline-soaked sponges of different thicknesses. High-resolution skin images, taken before and 5, 15, and 30 min after stimulation, were randomized and presented to experienced raters who evaluated erythema intensity and judged on the likelihood of stimulation condition (sham vs. active). In addition, semi-automated image processing generated probability heatmaps and surface area coverage of erythema. Adverse events were also collected.

Results: Erythema was present, but less intense in sham compared to active groups. Erythema intensity was inversely and directly associated to correct sham and active stimulation group allocation, respectively. Our image analyses found that erythema also occurs after sham and its distribution is homogenous below electrodes. Tingling frequency was higher using thin compared to thick sponges, whereas erythema was more intense under thick sponges.

Conclusions: Optimal investigator blinding is achieved when erythema after tDCS is mild. Erythema distribution under the electrode is patchy, occurs after sham tDCS and varies according to sponge thickness. We discuss methods to address skin erythema-related tDCS unblinding.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ner.12527DOI Listing

Publication Analysis

Top Keywords

sham active
12
erythema
9
skin redness
8
blinding transcranial
8
transcranial direct
8
direct current
8
current stimulation
8
investigator blinding
8
erythema intensity
8
erythema intense
8

Similar Publications

Robust preclinical models of asymmetric ventricular loading in late gestation reflecting conditions such as hypoplastic left heart syndrome are lacking. We characterized the morphometry and microvascular function of the hypoplastic left ventricle (LV) and remaining right ventricle (RV) in a sham-controlled late gestation fetal lamb model of impaired left ventricular inflow (ILVI). Singleton fetuses were instrumented at ∼120 days gestational age (dGA; term is ∼147 days) with vascular catheters, an aortic flow probe and a deflated left atrial balloon.

View Article and Find Full Text PDF

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Background: The misfolding and aggregation of the tau protein into neurofibrillary tangles constitute a central feature of tauopathies. Traumatic brain injury (TBI) has emerged as a potential risk factor, triggering the onset and progression of tauopathies. Our previous research revealed distinct polymorphisms in soluble tau oligomers originating from single versus repetitive mild TBIs.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a serious societal concern and is considered a major risk factor for the development of Alzheimer's disease (AD) and related dementias. Identifying shared pathological mediators that contribute to the progression of AD following TBI may allow therapeutic targeting to reduce the likelihood of developing AD following TBI. Cerebrovascular dysfunction is present in both AD and TBI, and thrombin has been implicated as a mediator of cerebrovascular dysfunction and inflammation.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: An increase in the development of learning deficit occurred during estrogen-deprived periods via the increment of systemic and brain oxidative stress, brain apoptosis, and synaptic dysplasticity. Although estrogen supplementation has been shown to improve the brain function in estrogen-deprived conditions, it can lead to several adverse effects. Therefore, the novel therapeutic approach with minimal side effects to protect brain function in estrogen-deprived conditions should be further investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!