MMP9 is a member of the family of zinc-containing endopeptidases which degrade various components of the extracellular matrix, thereby regulating matrix remodeling. Since matrix remodeling plays an important role during growth and progression of cancer and considering the fact that, tumor cells switch to aerobic glycolysis as its major energy source, this study was designed to analyze if partial inhibition of glycolysis (the major energy pathway during hypoxia) can be used as a means to control matrix remodeling in terms of MMP9 activity and expression. For this, human epithelial carcinoma cells were treated with glycolytic inhibitor, 2-deoxy glucose (2DG) at sub-lethal concentrations followed by analysis of the expression and activity of MMP2 and MMP9. The experimental findings demonstrate that exposure of cancer cells to glycolytic inhibitor at concentration that does not induce ER stress, downregulates the activity and expression of MMP9 without affecting the expression levels and activity of MMP2. Further mechanistic analysis revealed that the regulation of MMP9 was mediated in a SIRT-1 dependent mechanism and did not alter the NFkB signaling pathway. The overall results presented here, therefore suggest that the use of glycolytic inhibitor, 2DG at concentration that do not affect cell viability or induce ER stress can be an effective strategy to control matrix remodeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-016-2837-4 | DOI Listing |
Sci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.
View Article and Find Full Text PDFPLoS Biol
January 2025
School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom.
Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee;
Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!