The zebrafish enjoys several advantages over other model organisms. It is small, easy to maintain, prolific, and numerous genetic tools are available for it. For example, forward genetic screens have allowed investigators to identify important genes potentially involved in a variety of functions from embryogenesis to cancer. However, despite its sophisticated behavioral repertoire, behavioral methods have rarely been utilized in forward genetic screens. Here, we employ a two-tiered strategy, a proof of concept study, to explore the feasibility of behavioral screens. We generated mutant lines using transposon-based insertional mutagenesis, allowing us to bias mutant selection with target genes expressed within the brain. Furthermore, we employed an efficient and fast behavioral pre-selection in which we investigated the locomotory response of 5-day post-fertilization old larval fish to hyperosmotic shock. Based on this assay, we selected five lines for our lower throughput secondary adult behavioral screen. The latter screen utilized tests in which computer animated image presentation and video-tracking-based automated quantification of behavior allowed us to compare heterozygous zebrafish with their wild-type siblings on their responses to a variety of stimuli. We found significant mutation induced adult behavioral alterations in 4 out of the 5 lines analyzed, including changes in response to social or fear inducing stimuli, to handling and novelty, or in habituation to novelty. We discuss the pros and cons of behavioral phenotyping and of the use of different forward genetic methods in biomedical research with zebrafish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10519-016-9818-y | DOI Listing |
Int J Mol Sci
January 2025
Department of Experimental Medicine, Tor Vergata University of Rome, 00133 Rome, Italy.
MicroRNA (miR)-126 is frequently downregulated in malignancies, including breast cancer (BC). Despite its tumor-suppressive role, the mechanisms underlying miR-126 deregulation in BC remain elusive. Through silencing experiments, we identified Early B Cell Factor 1 (EBF1), ETS Proto-Oncogene 2 (ETS2), and Krüppel-Like Factor 2 (KLF2) as pivotal regulators of miR-126 expression.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
The widespread and inappropriate use of antibiotics, for therapeutic and prophylactic purposes, has contributed to a global crisis of rapidly increasing antimicrobial resistance of microorganisms. This resistance is often associated with elevated mutagenesis induced by the presence of antibiotics. Additionally, subinhibitory concentrations of antibiotics can trigger stress responses in bacteria, further exacerbating this problem.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian, China.
Previous studies have suggested an association between autoimmune diseases (AIDs) and the risk of prostate cancer (PCa). However, the causal relationship between AID and PCa remained unclear. The purpose of this study was to investigate the causal association between 3 common AIDs, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and ankylosing spondylitis (AS), and the risk of PCa.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.
View Article and Find Full Text PDFYi Chuan
January 2025
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
It has been more than 40 years since the beginning of exploring the genetic composition of ancient organisms from the perspective of ancient DNA. In the recent 20 years, with the development and application of high-throughput sequencing technology platforms and the improved efficiency of retrieving highly fragmented DNA molecules, ancient DNA research moved forward to a brand-new era of deep-time paleogenomics. It not only solved many controversial phylogenetic problems, enriched the migration and evolution details of various organisms including humans, but also launched exploration of the molecular responses to climate changes in terms of "whole genomic-big data-multi-species" level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!