To enable multiplexed protein analysis through the use of microarrays, reliable molecules capable of specifically binding to a protein of interest with high affinity are required. Further, this specificity and affinity must be retained upon immobilization to the microarray surface. This study investigates the performance of surface bound Affimer proteins, comparing the affinity and specificity of different binders for closely related immunoglobulin molecules using the quartz crystal microbalance with dissipation monitoring (QCM-D). It is demonstrated that the surface bound Affimer proteins are highly specific, differentiating between their target IgG and other closely related IgG subclasses. The binding affinities of the protein aptamers for their target IgG molecules are determined to be in the nanomolar range, comparable to typical antibody-antigen binding affinities. While measurements herein are done using QCM-D, the high specificity and binding affinities of the surface bound Affimer proteins opens applications in a range of microarray biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6an01602b | DOI Listing |
J Am Chem Soc
December 2024
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.
Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine's effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture.
View Article and Find Full Text PDFmBio
December 2024
Department of Biology, San Diego State University, San Diego, California, USA.
Unlabelled: Diverse marine animals undergo a metamorphic larval-to-juvenile transition in response to surface-bound bacteria. Although this host-microbe interaction is critical to establishing and maintaining marine animal populations, the functional activity of bacterial products and how they activate the host's metamorphosis program has not yet been defined for any animal. The marine bacterium stimulates the metamorphosis of a tubeworm called by producing a molecular syringe called metamorphosis-associated contractile structures (MACs).
View Article and Find Full Text PDFSwiss J Geosci
December 2024
Department of Surface Waters Research and Management, Eawag, Überlandstrasse 133, Dübendorf, 8600 Switzerland.
Unlabelled: Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States.
Understanding the early interactions between plants and endophytes will contribute to a more systematic approach to enhancing endophyte-mediated effects on plant growth and environmental stress resistance. This study examined very early growth and ascorbate metabolism after seed treatment of with three different endophytes. The three endophytes used were pb1(Bapb1), (Ml) and SLB4 (SLB4).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!