Ineffective esophageal motility (IEM) is characterized by low to very low amplitude propulsive contractions in the distal esophagus, hence primarily affecting the smooth muscle part of the esophagus. IEM is often found in patients with dysphagia or heartburn and is commonly associated with gastroesophageal reflux disease. IEM is assumed to be associated with ineffective bolus transport; however, this can be verified using impedance measurements or evaluation of a barium coated marshmallow swallow. Furthermore, water swallows may not assess accurately the motor capabilities of the esophagus, since contraction amplitude is strongly determined by the size and consistency of the bolus. The "peristaltic reserve" of the esophagus can be evaluated by multiple rapid swallows that, after a period of diglutative inhibition, normally give a powerful peristaltic contraction suggestive of the integrity of neural orchestration and smooth muscle action. The amplitude of contraction is determined by a balance between intrinsic excitatory cholinergic, inhibitory nitrergic, as well as postinhibition rebound excitatory output to the musculature. This is strongly influenced by vagal efferent motor neurons and this in turn is influenced by vagal afferent neurons that send bolus information to the solitary nucleus where programmed activation of the vagal motor neurons to the smooth muscle esophagus is initiated. Solitary nucleus activity is influenced by sensory activity from a large number of organs and various areas of the brain, including the hypothalamus and the cerebral cortex. This allows interaction between swallowing activities and respiratory and cardiac activities and allows the influence of acute and chronic emotional states on swallowing behavior. Interstitial cells of Cajal are part of the sensory units of vagal afferents, the intramuscular arrays, and they provide pacemaker activity to the musculature that can generate peristalsis in the absence of innervation. This indicates that a low-amplitude esophageal contraction, observed as IEM, can be caused by a multitude of factors, and therefore many pathways can be potentially explored to restore normal esophageal peristalsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036831 | PMC |
http://dx.doi.org/10.2147/CEG.S111820 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China.
Vascular calcification severely disrupts cardiovascular hemodynamics, leading to high rates of morbidity and mortality. Despite their clinical impact, the development of effective treatments remains limited, underscoring an urgent need for efficient and reliable drug screening methods. Vascular smooth muscle cells (VSMCs) are known to play a central role in driving the calcification process, undergoing an osteogenic transition in response to pathological conditions.
View Article and Find Full Text PDFWorld J Biol Psychiatry
January 2025
Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
Background: Genes associated with global developmental delay (GDD) and intellectual disability (ID) are increasingly being identified through next-generation sequencing (NGS) technologies. This study aimed to identify novel mutations in GDD/ID phenotypes through whole-exome sequencing (WES) and additional analyses.
Material And Methods: WES was performed on 27 subjects, among whom 18 were screened for potential novel mutations.
Vet Sci
January 2025
Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
Ghrelin (GhRL) is an orexigenic hormone influenced by nutritional state. It plays a role in skin repair and diseases, though little information exists regarding its function in this organ. GhRL and its receptor were investigated in the skin of sheep under different feeding conditions to explore GhRL system presence and possible modifications due to diet.
View Article and Find Full Text PDFMetabolites
January 2025
The College of Nursing, Zhejiang Chinese Medical University, Hangzhou 310053, China.
Background: Postoperative ileus (POI) is a common postoperative clinical complication that significantly affects postoperative rehabilitation and quality of life in patients and can even produce secondary complications, leading to serious consequences. External treatment using Shenhuang Plaster (SHP) (Shenque acupoint administration) has definite effects and unique advantages in the prevention and treatment of POI, but its mechanism is not completely clear. In this study, we investigated the therapeutic mechanism behind the effect of Shenhuang Plaster applied to the Shenque acupoint on gastrointestinal motility in POI mice based on metabolomics.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
School of Engineering, University of Kent, Canterbury CT2 7NZ, UK.
Pneumatic artificial muscles (PAMs) are flexible actuators that can be contracted or expanded by applying air pressure. They are used in robotics, prosthetics, and other applications requiring flexible and compliant actuation. PAMs are basically designed to mimic the function of biological muscles, providing a high force-to-weight ratio and smooth, lifelike movement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!