We demonstrate nondestructive, three-dimensional, microscopic, infrared (IR) spectral in-situ imaging of an extraterrestrial sample. Spatially resolved chemical composition and spatial correlations are investigated within a single 45 µm grain of the Murchison meteorite. Qualitative and quantitative investigation through this analytical technique can help elucidate the origin and evolution of meteoritic compounds as well as parent body processes without damaging or altering the investigated samples.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0003702816671072DOI Listing

Publication Analysis

Top Keywords

murchison meteorite
8
synchrotron-based three-dimensional
4
three-dimensional fourier-transform
4
fourier-transform infrared
4
infrared spectro-microtomography
4
spectro-microtomography murchison
4
meteorite grain
4
grain demonstrate
4
demonstrate nondestructive
4
nondestructive three-dimensional
4

Similar Publications

Abstract: The effects of post-hydration heating over a broad range of temperatures are evident in many Mighei-like carbonaceous (CM) chondrites as a variety of mineral transitions. To better understand these processes and how a CM chondrite's starting composition may have affected them, we experimentally heated two meteorites with different degrees of aqueous alteration, Allan Hills 83100 and Murchison, at 25 °C temperature steps from 200 °C to 950 °C and 300 °C to 750 °C, respectively. During heating, synchrotron in situ X-ray diffraction patterns were collected.

View Article and Find Full Text PDF

Cadmium isotope analyses are applied for research in planetary, Earth, environmental and life sciences. However, there is still a lack of efficient methods for the separation of the trace element Cd from the different types of samples that are of interest for isotopic analyses. This study presents new and improved Cd separation and purification techniques for meteorite, diverse terrestrial and seawater samples prior to Cd isotope measurements by multiple collector ICP-MS using the double spike approach for mass bias correction.

View Article and Find Full Text PDF
Article Synopsis
  • The mystery of sulfur's origin in Earth's first organisms has puzzled scientists for over a century, particularly due to the scarcity of sulfates during the Archean period.
  • Laboratory simulations show that simple alkylsulfonic acids, which are water-soluble S(+IV) compounds, can form in space when sulfur-doped ices interact with cosmic rays.
  • This finding provides insights into how essential sulfur-containing organic molecules may have been produced in extraterrestrial environments and later delivered to Earth via comets and asteroids, possibly found in meteorites like Murchison and Ryugu.
View Article and Find Full Text PDF
Article Synopsis
  • Polycyclic aromatic hydrocarbons (PAHs) make up about 20% of carbon in the interstellar medium and can form under various conditions, including in hot circumstellar environments and cold interstellar clouds.
  • Isotopic analysis of PAHs from asteroid Ryugu and meteorite Murchison shows that some PAHs, like naphthalene, fluoranthene, and pyrene, have higher carbon isotopic values than expected, indicating they likely formed in the interstellar medium rather than in hot environments.
  • In contrast, the PAHs phenanthrene and anthracene from Ryugu display isotopic values that suggest they were formed through higher-temperature reactions.
View Article and Find Full Text PDF

The enantiomeric excess (ee) of l-form amino acids found in the Murchison meteorite poses some issues about the cosmic origin of their chirality. Circular dichroism (CD) spectra of amino acids in the far-ultraviolet (FUV) at around 6.8 eV (182 nm) indicate that the circularly polarized light can induce ee through photochemical reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!