Long-range gamma band EEG oscillations mediate information transmission between distant brain regions. Gamma band-based coupling may not be restricted to cortex-to-cortex communication but may include extracortical parts of the visual system. The retinogram and visual event-related evoked potentials exhibit time-locked, forward propagating oscillations that are candidates of gamma oscillatory coupling between the retina and the visual cortex. In this study, we tested if this gamma coupling is present as indicated by the coherence of gamma-range (70-200 Hz) oscillatory potentials (OPs) recorded simultaneously from the retina and the primary visual cortex in freely moving, adult rats. We found significant retino-cortical OP coherence in a wide range of stimulus duration (0.01-1000 msec), stimulus intensity (800-5000 mcd/mm), interstimulus interval (10-400 msec), and stimulus frequency (0.25-25 Hz). However, at low stimulus frequencies, the OPs were time-locked, flickering light at 25 Hz entrained continuous OP coherence (steady-state response, SSR). Our results suggest that the retina and the visual cortex exhibit oscillatory coupling at high-gamma frequency with precise time locking and synchronization of information transfer from the retina to the visual cortex, similar to cortico-cortical gamma coupling. The temporal fusion of retino-cortical gamma coherence at stimulus rates of theater movies may explain the mechanism of the visual illusion of continuity. How visual perception depends on early transformations of ascending sensory information is incompletely understood. By simultaneous measurement of flash-evoked potentials in the retina and the visual cortex in awake, freely moving rats, we demonstrate for the first time that time-locked gamma oscillatory potentials exhibit stable retino-cortical synchrony across a wide range of stimulus parameters and that the temporal continuity of coherence changes with stimulus frequency according to the expected change in the visual illusion of continuity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064138 | PMC |
http://dx.doi.org/10.14814/phy2.12986 | DOI Listing |
Audiol Res
January 2025
Neurology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh 33516, Egypt.
Unlabelled: Peripheral hearing loss is associated with the cross-modal re-organization of the auditory cortex, which can occur in both pre- and post-lingual deaf cases.
Background/objectives: Whether to rely on the visual cues in cases with severe hearing loss with adequate amplification is a matter of debate. So, this study aims to study visual evoked potentials (VEPs) in children with severe or profound HL, whether fitted with HAs or CIs.
Front Aging Neurosci
January 2025
Department of Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: The perception of Subjective Visual Vertical (SVV) is crucial for postural orientation and significantly reflects an individual's postural control ability, relying on vestibular, visual, and somatic sensory inputs to assess the Earth's gravity line. The neural mechanisms and aging effects on SVV perception, however, remain unclear.
Objective: This study seeks to examine aging-related changes in SVV perception and uncover its neurological underpinnings through functional near-infrared spectroscopy (fNIRS).
Neurosurg Focus Video
January 2025
Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and.
Eloquent brain creates a challenge when resecting brain arteriovenous malformations (bAVMs). Here the authors present their technique of using subcortical motor mapping as an adjunct to increase safety during resection of a high-grade bAVM involving somatosensory cortex as well as cortical spinal tracts and visual tracts. After a bilateral craniotomy, they use direct cortical stimulation of the left motor cortex and subcortical stimulation using a suction stimulator to dynamically map motor tracts during the resection.
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Department of Neurosurgery.
Surgically remediable epilepsy of the eloquent brain poses the added challenge of preserving function while curing disease. Long-standing epileptogenic lesions have tenacious seizure networks and significant functional reorganizations. Large multilobar lesions may involve multiple functional areas, thereby challenging the limits of functional brain mapping.
View Article and Find Full Text PDFFront Neurosci
January 2025
Vision and Neural Engineering Laboratory, Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
Introduction: The vergence neural system was stimulated to dissect the afferent and efferent components of symmetrical vergence eye movement step responses. The hypothesis tested was whether the afferent regions of interest would differ from the efferent regions to serve as comparative data for future clinical patient population studies.
Methods: Thirty binocularly normal participants participated in an oculomotor symmetrical vergence step block task within a functional MRI experiment compared to a similar sensory task where the participants did not elicit vergence eye movements.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!