Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We review the use of a model organism to study the effects of a slow course, degenerative disease: namely, diabetes mellitus. Development and aging are biological phenomena entailing reproduction, growth, and differentiation, and then decline and progressive loss of functionality leading ultimately to failure and death. It occurs at all biological levels of organization, from molecular interactions to organismal well being and homeostasis. Yet very few models capable of addressing the different levels of complexity in these chronic, developmental phenomena are available to study, and model organisms are an exception and a welcome opportunity for these approaches. Genetic model organisms, like the common fruit fly, Drosophila melanogaster, offer the possibility of studying the panoply of life processes in normal and diseased states like diabetes mellitus, from a plethora of different perspectives. These long-term aspects are now beginning to be characterized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mod.2016.09.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!