Factors affecting microstructure, physicochemical and textural properties of a novel Gum tragacanth-PVA blend cryogel.

Carbohydr Polym

Department of Food Nanotechnology, Research Institute of Food Science and Technology, PO Box: 91735-147, Mashhad, Iran. Electronic address:

Published: January 2017

Gum tragacanth (GT) gels are usually formed by using chemical crosslinkers which cause safety concerns owing to their toxicity. This study introduces a novel and safe method for gelation of GT in the presence of small amounts of polyvinyl alcohol (PVA) followed by successive freeze-thaw (F-T) cycles. Gel formation was performed at two GT: PVA mixing ratios (1:1 and 3:1), four F-T consecutive cycles and two different thawing temperatures (25 and 5°C). Gel fraction, syneresis as well as mechanical properties and microstructural characteristics of the resultant gels were then studied. Gel fraction and mechanical properties improved by increasing F-T cycles and decreasing thawing temperature. Gel fraction increased by increasing the number of F-T cycles and decreasing the thawing temperature. Syneresis increased by increasing F-T cycles at GT: PVA mixing ratio of 1:1; whilst it was diminished at GT: PVA mixing ratio of 3:1. Microstructural observations by SEM confirmed mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2016.08.045DOI Listing

Publication Analysis

Top Keywords

f-t cycles
16
pva mixing
12
gel fraction
12
mechanical properties
12
increasing f-t
8
cycles decreasing
8
decreasing thawing
8
thawing temperature
8
increased increasing
8
mixing ratio
8

Similar Publications

In this study, the effect of freeze-thaw (F-T) processes on the mechanical and water absorption performance of citrate cross-linked chitosan/poly(vinyl alcohol) hydrogel pads was evaluated. An excellent cross-linking of 4 % (w/w) citrate was indicated by enhanced peak strength in Fourier-transform infrared spectroscopy and X-ray diffraction patterns, which was applied to the subsequent F-T process. The results in the deswelling rate, water contact angle, and relaxation time of samples exhibited a tendency to decrease and then increase with increasing F-T cycles, reaching a minimum of 0.

View Article and Find Full Text PDF

Influence of Freeze-Thaw Cycles and Sustained Load on the Durability and Bearing Capacity of Reinforced Concrete Columns.

Materials (Basel)

December 2024

Ruicheng Construction Engineering Co., Ltd., Lianyungang 222042, China.

The deterioration of concrete structures is mainly due to the combined action of the environment and external load. In this study, 32 reinforced concrete columns were prepared to evaluate the coupling actions on the properties of reinforced concrete structures. The durability, bearing capacity, and failure mode of reinforced concrete columns were investigated under the combined action of freeze-thaw (F-T) cycles, sustained load, and salt corrosion (water or composite salt solution).

View Article and Find Full Text PDF

The Belt and Road strategy has significantly advanced the scale of infrastructure construction in the Qinghai-Tibet Plateau permafrost area. Consequently, this demands higher requirements on the strength and frost resistance of concrete (FRC) cured under low-temperature and negative-temperature conditions. Accordingly, in this study, tests on the mechanical properties and FRC were conducted under standard curing, 5 °C curing, and -3 °C curing conditions.

View Article and Find Full Text PDF

Background And Objectives: Epcoritamab is a CD3xCD20 bispecific antibody approved for the treatment of adults with different types of relapsed or refractory (R/R) B cell non-Hodgkin lymphoma (B-NHL) after ≥ 2 lines of systemic therapy. Here we report the first results from a population pharmacokinetic model-based analysis using data from 2 phase 1/2 clinical trials (EPCORE NHL-1, NCT03625037 and EPCORE NHL-3, NCT04542824) evaluating epcoritamab in patients with R/R B-NHL.

Methods: Plasma concentration-time data included 6819 quantifiable pharmacokinetic samples from 327 patients with R/R B-NHL.

View Article and Find Full Text PDF

The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!