A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intrinsic Base-Pair Rearrangement in the Hairpin Ribozyme Directs RNA Conformational Sampling and Tertiary Interface Formation. | LitMetric

Dynamic fluctuations in RNA structure enable conformational changes that are required for catalysis and recognition. In the hairpin ribozyme, the catalytically active structure is formed as an intricate tertiary interface between two RNA internal loops. Substantial alterations in the structure of each loop are observed upon interface formation, or docking. The very slow on-rate for this relatively tight interaction has led us to hypothesize a double conformational capture mechanism for RNA-RNA recognition. We used extensive molecular dynamics simulations to assess conformational sampling in the undocked form of the loop domain containing the scissile phosphate (loop A). We observed several major accessible conformations with distinctive patterns of hydrogen bonding and base stacking interactions in the active-site internal loop. Several important conformational features characteristic of the docked state were observed in well-populated substates, consistent with the kinetic sampling of docking-competent states by isolated loop A. Our observations suggest a hybrid or multistage binding mechanism, in which initial conformational selection of a docking-competent state is followed by induced-fit adjustment to an in-line, chemically reactive state only after formation of the initial complex with loop B.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b05606DOI Listing

Publication Analysis

Top Keywords

hairpin ribozyme
8
conformational sampling
8
tertiary interface
8
interface formation
8
loop observed
8
conformational
6
loop
6
intrinsic base-pair
4
base-pair rearrangement
4
rearrangement hairpin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!