The sixth CAPRI edition included new modeling challenges, such as the prediction of protein-peptide complexes, and the modeling of homo-oligomers and domain-domain interactions as part of the first joint CASP-CAPRI experiment. Other non-standard targets included the prediction of interfacial water positions and the modeling of the interactions between proteins and nucleic acids. We have participated in all proposed targets of this CAPRI edition both as predictors and as scorers, with new protocols to efficiently use our docking and scoring scheme pyDock in a large variety of scenarios. In addition, we have participated for the first time in the servers section, with our recently developed webserver, pyDockWeb. Excluding the CASP-CAPRI cases, we submitted acceptable models (or better) for 7 out of the 18 evaluated targets as predictors, 4 out of the 11 targets as scorers, and 6 out of the 18 targets as servers. The overall success rates were below those in past CAPRI editions. This shows the challenging nature of this last edition, with many difficult targets for which no participant submitted a single acceptable model. Interestingly, we submitted acceptable models for 83% of the evaluated protein-peptide targets. As for the 25 cases of the CASP-CAPRI experiment, in which we used a larger variety of modeling techniques (template-based, symmetry restraints, literature information, etc.), we submitted acceptable models for 56% of the targets. In summary, this CAPRI edition showed that pyDock scheme can be efficiently adapted to the increasing variety of problems that the protein interactions field is currently facing. Proteins 2017; 85:487-496. © 2016 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.25184 | DOI Listing |
Proteins
August 2020
Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China.
Integration of template-based modeling, global sampling and precise scoring is crucial for the development of molecular docking programs with improved accuracy. We combined template-based modeling and ab-initio docking protocol as hybrid docking strategy called CoDock for the docking and scoring experiments of the seventh CAPRI edition. For CAPRI rounds 38-45, we obtained acceptable or better models in the top 10 submissions for eight out of the 16 evaluated targets as predictors, nine out of the 16 targets as scorers.
View Article and Find Full Text PDFWe present the seventh report on the performance of methods for predicting the atomic resolution structures of protein complexes offered as targets to the community-wide initiative on the Critical Assessment of Predicted Interactions. Performance was evaluated on the basis of 36 114 models of protein complexes submitted by 57 groups-including 13 automatic servers-in prediction rounds held during the years 2016 to 2019 for eight protein-protein, three protein-peptide, and five protein-oligosaccharide targets with different length ligands. Six of the protein-protein targets represented challenging hetero-complexes, due to factors such as availability of distantly related templates for the individual subunits, or for the full complex, inter-domain flexibility, conformational adjustments at the binding region, or the multi-component nature of the complex.
View Article and Find Full Text PDFThe seventh CAPRI edition imposed new challenges to the modeling of protein-protein complexes, such as multimeric oligomerization, protein-peptide, and protein-oligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid-body docking, template-based modeling, flexible optimization, multiparametric scoring, and experimental restraints. This was especially relevant for the multimolecular assemblies proposed in the CASP12-CAPRI37 and CASP13-CAPRI46 joint rounds, which were described and evaluated elsewhere.
View Article and Find Full Text PDFAm J Geriatr Psychiatry
September 2018
Department of Psychiatry, GGZ in Geest, VU University Medical Center, Amsterdam, The Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, VU University Medical Center, Amsterdam, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!