J Org Chem
Department of Process and Analytical Chemistry, Merck & Co. Inc. , Rahway, New Jersey 07065, United States.
Published: October 2016
A novel method for the oxidation of indolines to indoles is described. The method uses a Cu(I) catalyst and an organic percarbonate as the stoichiometric oxidant. The procedure was successfully applied at 0.5 kg scale in the production of a key intermediate in the synthesis of Elbasvir, which is a novel therapy for the treatment of hepatitis C virus infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.6b01854 | DOI Listing |
J Org Chem
January 2025
Chang-Kung Chuang Institute, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
A new stereoselective [4+2] annulation method for constructing tetracyclic indolines by reacting indoles with bicyclic N-substituted cyclobutanes has been developed. Using Sc(OTf) as a catalyst, a series of tetracyclic indolines with four continued stereogenic carbon centers have been obtained in ≤86% yields as single diastereomers. This reaction offers an accessible way for the rapid construction of the core structures of biologically active natural products like paucidirinine, deethylibophyllidine, and ibophyllidine.
View Article and Find Full Text PDFCommun Chem
December 2024
Department of Chemistry, The University of Manchester, Manchester, UK.
Energy-efficient and deep-blue organic light-emitting diode (OLED) with long operating stability remains a key challenge to enable a disruptive change in OLED display and lighting technology. Part of the challenge is associated with a very narrow choice of the robust host materials having over 3 eV triplet energy level to facilitate efficient deep-blue emission and deliver excellent performance in the OLED device. Here we show the molecular design of new 1,3,5-oxadiazines (NON)-host materials with high triplet energy over 3.
View Article and Find Full Text PDFOrg Lett
December 2024
Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam, India 784028.
We herein report the serendipitous discovery of the interrupted Plancher rearrangement initiated by an HFIP-promoted dearomative epoxide-indole cyclization, unlocking a new blueprint to the formal C3 umpolung reactivity of indoles. This rapid complexity generating cascade process paves the way toward a new class of fused-bridged indolines in high yields and under full regio- and diastereocontrol. The reaction is amenable to a wide range of substituents in the starting materials.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing 312000, China.
The oxidative C2-C3 π bond activation strategy is the most efficient tool to synthesize oxygen-containing indoline, which frequently appears in natural products with various biological activities as structural units. Recently, the oxidation-induced cascade strategy through oxygenation activation of the indolic C2-C3 π bond of indoles has received much attention for its use in efficiently establishing complex indoline with oxygen-containing molecular architectures, and holds tremendous potential in the total synthesis of indole alkaloids. It can be carried out using potential activated indole radical cations or imine cation intermediates produced oxidative C2-C3 π bond activation of indole with various nucleophiles or ring-forming reagents by employing simple and non-decorated indoles as starting substrates.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Applied Organic Chemistry Department, National Research Center, Dokki, Cairo, 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt. Electronic address:
Inflammation is central to numerous diseases, highlighting the need for new anti-inflammatory agents. This study explores the potential of novel spirofused indoline-quinazoline hybrids (4a-p) as anti-inflammatory compounds, inspired by a spiroisatin analogue (VI) that showed modest TNF-α inhibition. We aimed to enhance activity by modifying the isatin scaffold: first, introducing N-alkylation (propyl, butyl, or isobutyl) to improve hydrophobic interactions within the TNF-α dimer active site; second, adding halogens (F, Cl, Br) at the 5-position to increase lipophilicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.