An important focus of studies of individuals at ultra-high risk (UHR) for psychosis has been to identify biomarkers to predict which individuals will transition to psychosis. However, the majority of individuals will prove to be resilient and go on to experience remission of their symptoms and function well. The aim of this study was to investigate the possibility of using structural MRI measures collected in UHR adolescents at baseline to quantitatively predict their long-term clinical outcome and level of functioning. We included 64 UHR individuals and 62 typically developing adolescents (12-18 years old at recruitment). At six-year follow-up, we determined resilience for 43 UHR individuals. Support Vector Regression analyses were performed to predict long-term functional and clinical outcome from baseline MRI measures on a continuous scale, instead of the more typical binary classification. This led to predictive correlations of baseline MR measures with level of functioning, and negative and disorganization symptoms. The highest correlation (r = 0.42) was found between baseline subcortical volumes and long-term level of functioning. In conclusion, our results show that structural MRI data can be used to quantitatively predict long-term functional and clinical outcome in UHR individuals with medium effect size, suggesting that there may be scope for predicting outcome at the individual level. Moreover, we recommend classifying individual outcome on a continuous scale, enabling the assessment of different functional and clinical scales separately without the need to set a threshold. Hum Brain Mapp 38:704-714, 2017. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866746PMC
http://dx.doi.org/10.1002/hbm.23410DOI Listing

Publication Analysis

Top Keywords

predict long-term
12
clinical outcome
12
level functioning
12
uhr individuals
12
functional clinical
12
ultra-high risk
8
individuals will
8
structural mri
8
mri measures
8
quantitatively predict
8

Similar Publications

Background: A number of efforts have been made to tailor behavioral healthcare treatments to the variable needs of patients with low back pain (LBP). The most common approach involves the STarT Back Screening Tool (SBST) to triage the need for psychologically informed care, which explores concerns about pain and addresses unhelpful beliefs, attitudes, and behaviors. Such beliefs that pain always signifies injury or tissue damage and that exercise should be avoided have been implied as psychosocial mediators of chronic pain and can impede recovery.

View Article and Find Full Text PDF

Background: Patients with cerebrovascular accident (CVA) should be involved in setting their rehabilitation goals. A personalized prediction of CVA outcomes would allow care professionals to better inform patients and informal caregivers. Several accurate prediction models have been created, but acceptance and proper implementation of the models are prerequisites for model adoption.

View Article and Find Full Text PDF

Purpose: Predicting long-term anatomical responses in neovascular age-related macular degeneration (nAMD) patients is critical for patient-specific management. This study validates a generative deep learning (DL) model to predict 12-month posttreatment optical coherence tomography (OCT) images and evaluates the impact of incorporating clinical data on predictive performance.

Methods: A total of 533 eyes from 513 treatment-naïve nAMD patients were analyzed.

View Article and Find Full Text PDF

Distributed representations of temporally accumulated reward prediction errors in the mouse cortex.

Sci Adv

January 2025

Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.

Reward prediction errors (RPEs) quantify the difference between expected and actual rewards, serving to refine future actions. Although reinforcement learning (RL) provides ample theoretical evidence suggesting that the long-term accumulation of these error signals improves learning efficiency, it remains unclear whether the brain uses similar mechanisms. To explore this, we constructed RL-based theoretical models and used multiregional two-photon calcium imaging in the mouse dorsal cortex.

View Article and Find Full Text PDF

Density dependence is a vital mechanism for explaining tree species diversity. Empirical studies worldwide have demonstrated that neighbor density influences plant survival and growth in various communities. However, it remains unclear how neighbor density affects plant survival and growth over extended periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!