Farmed Atlantic salmon (Salmo salar) is a globally important production species, including in Australia where breeding and selection has been in progress since the 1960s. The recent development of SNP genotyping platforms means genome-wide association and genomic prediction can now be implemented to speed genetic gain. As a precursor, this study collected genotypes at 218 132 SNPs in 777 fish from a Tasmanian breeding population to assess levels of genetic diversity, the strength of linkage disequilibrium (LD) and imputation accuracy. Genetic diversity in Tasmanian Atlantic salmon was lower than observed within European populations when compared using four diversity metrics. The distribution of allele frequencies also showed a clear difference, with the Tasmanian animals carrying an excess of low minor allele frequency variants. The strength of observed LD was high at short distances (<25 kb) and remained above background for marker pairs separated by large chromosomal distances (hundreds of kb), in sharp contrast to the European Atlantic salmon tested. Genotypes were used to evaluate the accuracy of imputation from low density (0.5 to 5 K) up to increased density SNP sets (78 K). This revealed high imputation accuracies (0.89-0.97), suggesting that the use of low density SNP sets will be a successful approach for genomic prediction in this population. The long-range LD, comparatively low genetic diversity and high imputation accuracy in Tasmanian salmon is consistent with known aspects of their population history, which involved a small founding population and an absence of subsequent introgression. The findings of this study represent an important first step towards the design of methods to apply genomics in this economically important population.

Download full-text PDF

Source
http://dx.doi.org/10.1111/age.12513DOI Listing

Publication Analysis

Top Keywords

atlantic salmon
12
linkage disequilibrium
8
tasmanian atlantic
8
genetic diversity
8
diversity
4
diversity linkage
4
disequilibrium farmed
4
tasmanian
4
farmed tasmanian
4
salmon farmed
4

Similar Publications

Aquaculture is one of the world's fastest-growing sectors in food production but with multiple challenges related to animal handling and infections. The disease caused by infectious salmon anemia virus (ISAV) leads to outbreaks of local epidemics, reducing animal welfare, and causing significant economic losses. The composition of feed has shifted from marine ingredients such as fish oil and fish meal towards a more plant-based diet causing reduced levels of eicosapentaenoic acid (EPA).

View Article and Find Full Text PDF

Salmonid rickettsial septicemia (SRS) is a critical sanitary problem in the Chilean aquaculture industry since it induces the highest mortality rate in salmonids among all infectious diseases. , a facultative intracellular bacterium, is the biological agent of SRS. In Chile, two genogroups of , designated as LF-89 and EM-90, have been identified.

View Article and Find Full Text PDF

In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.

View Article and Find Full Text PDF

Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa- and , are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both and are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene.

View Article and Find Full Text PDF

Two short-term feeding trials were conducted on , with the interaction between dietary zinc (Zn) and fat level in trial 1 and with the interaction between dietary Zn and n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in trial 2, focusing on postprandial plasma parameters, intestinal Zn and fat uptake and transport. After 4-week feeding interventions, samples were collected at different postprandial time points, ranging from 0 to 36/38 h after feeding. Results showed that increased Zn level in feed significantly increased the postprandial plasma Zn level in trial 1 (8-9°C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!