High-Performance Liquid Chromatography Analysis of CYP2C8-Catalyzed Paclitaxel 6α-Hydroxylation.

Methods Mol Biol

Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA, USA.

Published: January 2006

Paclitaxel (Taxol) is a naturally occurring member of the taxane family of antitumor drugs, which act by stabilizing microtubules. Paclitaxel is inactivated in human liver by a cytochrome P450 (P450)-catalyzed 6α-hydroxylation reaction. A reverse-phase, high-performance liquid chromatographic assay is described for the analysis of paclitaxel 6α-hydroxylation catalyzed by human liver microsomes or cDNA-expressed P450 enzyme CYP2C8. Analytical separations are achieved using a C column with a linear gradient of 10-100% methanol, with detection at 230 nm. This method is applicable to enzymatic studies for determination of CYP2C8-catalyzed paclitaxel 6α-hydroxylation activity.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-998-2:103DOI Listing

Publication Analysis

Top Keywords

paclitaxel 6α-hydroxylation
12
high-performance liquid
8
cyp2c8-catalyzed paclitaxel
8
human liver
8
paclitaxel
5
liquid chromatography
4
chromatography analysis
4
analysis cyp2c8-catalyzed
4
6α-hydroxylation
4
6α-hydroxylation paclitaxel
4

Similar Publications

Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.

View Article and Find Full Text PDF

: (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy.

View Article and Find Full Text PDF

Peptide Aptamer-Paclitaxel Conjugates for Tumor Targeted Therapy.

Pharmaceutics

December 2024

Law Sau Fai Institute for Advancing Translational Medicine in Bone &Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China.

: Traditional paclitaxel therapy often results in significant side effects due to its non-specific targeting of cancer cells. Peptide aptamer-paclitaxel conjugates present a promising alternative by covalently attaching paclitaxel to a versatile peptide aptamer via a linker. Compared to antibody-paclitaxel conjugates, peptide aptamer-paclitaxel conjugates offer several advantages, including a smaller size, lower immunogenicity, improved tissue penetration, and easier engineering.

View Article and Find Full Text PDF

Background: Chemoresistance is a major obstacle in high-grade serous carcinoma (HGSC) treatment. Although many patients initially respond to chemotherapy, the majority of them relapse due to Carboplatin and Paclitaxel resistance. Drug repurposing has surfaced as a potentially effective strategy that works synergically with standard chemotherapy to bypass chemoresistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!