Mouse zinc finger and SCAN domain containing 4 (Zscan4) proteins, which are encoded by multiple copies of Zscan4 genes, are expressed specifically in preimplantation embryos in vivo and embryonic stem (ES) cells in vitro. However, the expression patterns of mouse Zscan4 in vivo have been largely elusive. Here, we show that Zscan4 proteins are expressed in adult ovaries and testes. In ovaries, Zscan4 proteins were detected in germinal vesicle (GV) stage oocytes in antral follicles, indicating that Zscan4 genes are activated during the diplotene/dictyate stage in meiotic prophase I. Remarkably, Zscan4 showed different spatial localization patterns between two distinct GV oocytes, which can be distinguished by global chromatin organization-surrounded nucleolus (SN) and non-surrounded nucleolus (NSN). These spatiotemporal differences in Zscan4 localizations correlated with the transition of RNA polymerase II-mediated transcriptional status during GV oocyte maturation. In testes, Zscan4 proteins were detected in spermatocytes at late pachytene/diplotene stages and in Sertoli cells. These results suggest that Zscan4 may play critical roles during late meiotic prophase in both males and females.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5311088PMC
http://dx.doi.org/10.1007/s11626-016-0096-zDOI Listing

Publication Analysis

Top Keywords

zscan4 proteins
16
meiotic prophase
12
zscan4
11
late meiotic
8
zscan4 genes
8
proteins detected
8
zscan4 expressed
4
expressed late
4
prophase spermatogenesis
4
spermatogenesis oogenesis
4

Similar Publications

Zygotic genome activation occurs in two-cell (2C) embryos, and a 2C-like state is also activated in sporadic (~1%) naïve embryonic stem cells in mice. Elevated chromatin accessibility is critical for the 2C-like state to occur, yet the underlying molecular mechanisms remain elusive. Zscan4 exhibits burst expression in 2C embryos and 2C-like cells.

View Article and Find Full Text PDF
Article Synopsis
  • Mouse embryonic stem cells (mESCs) can occasionally shift to a temporary totipotent state similar to two-cell (2C) embryos, which is thought to play a role in their high genomic stability.
  • Researchers created a system to eliminate these 2C-like cells (2CLCs) from ESC cultures, which led to an increase in DNA damage and genomic mutations, indicating the importance of 2CLCs for maintaining genomic stability.
  • The removal of 2CLCs also caused increased cell death and reduced growth in mESCs, and when the p53 gene is inactive, it worsens the DNA damage response, further highlighting the critical role of 2C-like states in preserving ESC functionality.
View Article and Find Full Text PDF

Cancers harness embryonic programs to evade aging and promote survival. Normally, sequences at chromosome ends called telomeres shorten with cell division, serving as a countdown clock to limit cell replication. Therefore, a crucial aspect of cancerous transformation is avoiding replicative aging by activation of telomere repair programs.

View Article and Find Full Text PDF

The Zinc finger and SCAN domain containing 4 (ZSCAN4) protein, expressed transiently in pluripotent stem cells, gametes, and early embryos, extends telomeres, enhances genome stability, and improves karyotypes in mouse embryonic stem (mES) cells. To gain insights into the mechanism of ZSCAN4 function, we identified genome-wide binding sites of endogenous ZSCAN4 protein using ChIP-seq technology in mouse and human ES cells, where the expression of endogenous ZSCAN4 was induced by treating cells with retinoic acids or by overexpressing DUX4. We revealed that both mouse and human ZSCAN4 bind to the TGCACAC motif located in CA/TG microsatellite repeats, which are known to form unstable left-handed duplexes called Z-DNA that can induce double-strand DNA breaks and mutations.

View Article and Find Full Text PDF

Early embryonic development relies on the maternal RNAs and newly synthesized proteins during oogenesis. Zygotic transcription is an important event occurring at a specific time after fertilization. If no zygotic transcription occurs, the embryo will die because it is unable to meet the needs of the embryo and continue to grow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!