Bladder carcinoma is the most common malignancy of the urinary tract. The major aim of the present study is to investigate the association between mitochondrial DNA () and gene mutations in bladder carcinoma. A total of 30 patients with transitional cell carcinoma and 27 controls were recruited for the study. Bladder cancer tissues were obtained by radical cystectomy or transurethral resection. Genomic DNA was extracted from peripheral blood. and genes were amplified by polymerase chain reaction and sequenced directly. A total of 37 polymorphisms were identified, among which, 2 mutations were significant in the patient group, and 1 mutation was significant in the control group. Additionally, 5 different moderate positive correlations between mutations and 3 different positive correlations between gene and mutations were detected. The high incidence of and gene mutations in bladder cancer suggests that these genes could be important in carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038862PMC
http://dx.doi.org/10.3892/ol.2016.5000DOI Listing

Publication Analysis

Top Keywords

gene mutations
16
association mitochondrial
8
mitochondrial dna
8
dna gene
8
transitional cell
8
cell carcinoma
8
bladder carcinoma
8
mutations bladder
8
bladder cancer
8
positive correlations
8

Similar Publications

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Genetic architecture of Multiple Myeloma and its prognostic implications - An updated review.

Malays J Pathol

December 2024

Universiti Sains Malaysia, School of Medical Sciences, Human Genome Centre, Health Campus, Kelantan, Malaysia.

Multiple myeloma (MM), a clonal B-cell neoplasia, is an incurable and heterogeneous disease where survival ranges from a few months to more than 10 years. The clinical heterogeneity of MM arises from multiple genomic events that result in tumour development and progression. Recurring genomic abnormalities including cytogenetic abnormalities, gene mutations and abnormal gene expression profiles in myeloma cells have a strong prognostic power.

View Article and Find Full Text PDF

Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.

Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.

View Article and Find Full Text PDF

Therapeutic effect of novel drug candidate, PRG-N-01, on NF2 syndrome-related tumor.

Neuro Oncol

December 2024

Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea.

Background: NF2-related schwannomatosis (NF2-SWN) is associated with multiple benign tumors in the nervous system. NF2-SWN, caused by mutations in the NF2 gene, has developed into intracranial and spinal schwannomas. Because of the high surgical risk and frequent recurrence of multiple tumors, targeted therapy is necessary.

View Article and Find Full Text PDF

Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!