Soluble purified recombinant C2ORF40 protein inhibits tumor cell growth by decreasing telomerase activity in esophageal squamous cell carcinoma.

Oncol Lett

State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, P.R. China.

Published: October 2016

The chromosome 2 open reading frame 40 () gene is a candidate tumor suppressor gene for a variety of tumors. Previous results by the present authors revealed that the C2ORF40 protein is a secreted protein. However, the exact biological function of secreted C2ORF40 protein in carcinogenesis has not been thoroughly investigated. In the present study, the signal peptide sequence of the cDNA was initially removed to produce secreted recombinant human C2ORF40 protein (rhC2ORF40). Soluble rhC2ORF40 was successfully expressed and purified, which was evaluated for the first time, to the best of our knowledge, for tumor-suppressing function in esophageal cancer. The present results revealed that soluble purified rhC2ORF40 was concentrated with a purity of >95%. Furthermore, rhC2ORF40 inhibited esophageal cancer cell growth in a dose-dependent manner compared with a control group (P<0.05). In addition, the present study demonstrated for the first time that rhC2ORF40 decreased telomerase activity using telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (P<0.05), without affecting the expression levels of telomerase-component RNA (P>0.05), as shown with polymerase chain reaction. Overall, the present results demonstrated that soluble rhC2ORF40 inhibited tumor cell growth by decreasing telomerase activity in esophageal squamous cell carcinoma. Therefore, soluble rhC2ORF40 with a high purity and biological activity may be a potential biological therapy drug for esophageal cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038444PMC
http://dx.doi.org/10.3892/ol.2016.4935DOI Listing

Publication Analysis

Top Keywords

c2orf40 protein
16
soluble purified
8
cell growth
8
esophageal cancer
8
protein
5
purified recombinant
4
c2orf40
4
recombinant c2orf40
4
protein inhibits
4
inhibits tumor
4

Similar Publications

In recent years, C2ORF40 has been identified as a tumor suppressor gene with multiple functions, including roles in cell proliferation, migration, and senescence. To explore the role of the C2ORF40 gene in different tumors, we used multiple databases for analysis. Compared to adjacent normal tissues, C2ORF40 is downregulated in a variety of malignant tumors, including tumors such as breast cancer, colorectal cancer, bladder cancer, hepatocellular carcinoma and prostate cancer.

View Article and Find Full Text PDF

Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor of epithelial origin in head and neck with high incidence rate in Southern China. C2orf40 has been identified as a tumor suppressor gene in many cancers. However, the roles of C2orf40 in nasopharyngeal carcinoma has not been studied.

View Article and Find Full Text PDF

In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations.

View Article and Find Full Text PDF

Analysis of Shared Genetic Regulatory Networks for Alzheimer's Disease and Epilepsy.

Biomed Res Int

February 2022

Department of Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin 300350, China.

Alzheimer's disease (AD) and epilepsy are neurological disorders that affect a large cohort of people worldwide. Although both of the two diseases could be influenced by genetic factors, the shared genetic mechanism underlying the pathogenesis of them is still unclear. In this study, we aimed to identify the shared genetic networks and corresponding hub genes for AD and epilepsy.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) is one of the most common cancers, and is associated with a poor clinical outcome. The key genes and potential prognostic markers in colorectal carcinoma remain to be identified and explored for clinical application. DNA expression/methylation profiles were downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed/methylated genes (DEGs and DEMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!