Metagenomic Assembly: Overview, Challenges and Applications.

Yale J Biol Med

Department of Computer Science and Center of Bioinformatics and Computational Biology, University of Maryland.

Published: September 2016

Advances in sequencing technologies have led to the increased use of high throughput sequencing in characterizing the microbial communities associated with our bodies and our environment. Critical to the analysis of the resulting data are sequence assembly algorithms able to reconstruct genes and organisms from complex mixtures. Metagenomic assembly involves new computational challenges due to the specific characteristics of the metagenomic data. In this survey, we focus on major algorithmic approaches for genome and metagenome assembly, and discuss the new challenges and opportunities afforded by this new field. We also review several applications of metagenome assembly in addressing interesting biological problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045144PMC

Publication Analysis

Top Keywords

metagenomic assembly
8
metagenome assembly
8
assembly overview
4
overview challenges
4
challenges applications
4
applications advances
4
advances sequencing
4
sequencing technologies
4
technologies led
4
led increased
4

Similar Publications

Metagenomics analysis has enabled the measurement of the microbiome diversity in environmental samples without prior targeted enrichment. Functional and phylogenetic studies based on microbial diversity retrieved using HTS platforms have advanced from detecting known organisms and discovering unknown species to applications in disease diagnostics. Robust validation processes are essential for test reliability, requiring standard samples and databases deriving from real samples and in silico generated artificial controls.

View Article and Find Full Text PDF

Stacking fermentation is critical in sauce-flavor production, but winter production often sees abnormal fermentations, like Waistline and Sub-Temp fermentation, affecting yield and quality. This study used three machine learning models (Logistic Regression, KNN, and Random Forest) combined with multi-omics (metagenomics and flavoromics) to develop a classification model for abnormal fermentation. SHAP analysis identified 13 Sub-Temp Fermentation and 9 Waistline microbial biomarkers, along with 9 Sub-Temp Fermentation and 12 Waistline flavor biomarkers.

View Article and Find Full Text PDF

Seed microbiomes promote Astragalus mongholicus seed germination through pathogen suppression and cellulose degradation.

Microbiome

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.

Background: Seed-associated microorganisms play crucial roles in maintaining plant health by providing nutrients and resistance to biotic and abiotic stresses. However, their functions in seed germination and disease resistance remain poorly understood. In this study, we investigated the microbial community assembly features and functional profiles of the spermosphere and endosphere microbiomes related to germinated and ungerminated seeds of Astragalus mongholicus by using amplicon and shotgun metagenome sequencing techniques.

View Article and Find Full Text PDF

mettannotator: a comprehensive and scalable Nextflow annotation pipeline for prokaryotic assemblies.

Bioinformatics

January 2025

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom.

Summary: In recent years there has been a surge in prokaryotic genome assemblies, coming from both isolated organisms and environmental samples. These assemblies often include novel species that are poorly represented in reference databases creating a need for a tool that can annotate both well-described and novel taxa, and can run at scale. Here, we present mettannotator-a comprehensive, scalable Nextflow pipeline for prokaryotic genome annotation that identifies coding and non-coding regions, predicts protein functions, including antimicrobial resistance, and delineates gene clusters.

View Article and Find Full Text PDF

Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!