Surface plasmon (SP) coupling has been successfully applied to nonradiative energy transfer via exciton-plasmon-exciton coupling in conventionally sandwiched donor-metal film-acceptor configurations. However, these structures lack the desired efficiency and suffer poor photoemission due to the high energy loss. Here, we show that the cascaded exciton-plasmon-plasmon-exciton coupling in stratified architecture enables an efficient energy transfer mechanism. The overlaps of the surface plasmon modes at the metal-dielectric and dielectric-metal interfaces allow for strong cross-coupling in comparison with the single metal film configuration. The proposed architecture has been demonstrated through the analytical modeling and numerical simulation of an oscillating dipole near the stratified nanostructure of metal-dielectric-metal-acceptor. Consistent with theoretical and numerical results, experimental measurements confirm at least 50% plasmon resonance energy transfer enhancement in the donor-metal-dielectric-metal-acceptor compared to the donor-metal-acceptor structure. Cascaded plasmon-plasmon coupling enables record high efficiency for exciton transfer through metallic structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048420 | PMC |
http://dx.doi.org/10.1038/srep34086 | DOI Listing |
Anal Chim Acta
February 2025
Joint Drug Development and Innovation Centre for Neurological Disorders of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu, 730000, PR China. Electronic address:
Background: Botulinum neurotoxin type A (BoNT/A) is the most potent and prevalent neurotoxin known to cause botulism, and is also widely used in medical and cosmetic applications. The detection of BoNT/A is of great significance for botulism diagnosis and drug potency determination. Currently, the mouse bioassay (MBA) has long been the gold standard method but has disadvantages of ethical concerns, long testing duration, and high costs.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding 071002, China. Electronic address:
Imidacloprid (IMI), as an emerging pollutant, is frequently detected in pesticide wastewater. Cobalt-based single-atom catalysts (Co-SACs) doped with sulfur atoms can serve as an efficient strategy to activate peroxymonosulfate (PMS) and degrade organic pollutants. The paper employed density functional theory and computational toxicology to deeply explore the mechanism and ecotoxicity of IMI when S atoms were introduced into Co-SACs for PMS activation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 China; China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China. Electronic address:
NbO has become a focus of research for its suitability as an anode material in sodium ion capacitors (SICs), due to its open ionic channels. The integration of NbO with reduced graphene oxide (rGO) is known to boost its electrical conductivity. However, the sluggish interfacial charge transfer kinetics and interface collapse of NbO/rGO pose challenges to its rate capability and durability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis and Dalian National Laboratory for Clean Energy, CHINA.
Hydroxy radical (•OH) is a prestigious oxidant that allows the cleavage of strong chemical bonds of methane but is untamed, leading to over-oxidation of methane and waste of oxidants, especially at high methane conversion. Here, we managed to buffer •OH in an aqueous solution of photo-irradiated Fe3+, where •OH almost participates in methane oxidation. Due to the interaction between Fe3+ and SO42-, the electron transfer from OH- to excited-state Fe3+ for •OH generation is retarded, while excessive •OH is consumed by generated Fe2+ to restore Fe3+.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!