The Ska complex promotes Aurora B activity to ensure chromosome biorientation.

J Cell Biol

Growth and Development, Biozentrum, University of Basel, 4056 Basel, Switzerland Cell Cycle and Cancer, Group of Biomedical Research in Gynecology, Vall d'Hebron Research Institute (VHIR)-UAB, 08035 Barcelona, Spain

Published: October 2016

Chromosome biorientation and accurate segregation rely on the plasticity of kinetochore-microtubule (KT-MT) attachments. Aurora B facilitates KT-MT dynamics by phosphorylating kinetochore proteins that are critical for KT-MT interactions. Among the substrates whose microtubule and kinetochore binding is curtailed by Aurora B is the spindle and kinetochore-associated (Ska) complex, a key factor for KT-MT stability. Here, we show that Ska is not only a substrate of Aurora B, but is also required for Aurora B activity. Ska-deficient cells fail to biorient and display chromosome segregation errors underlying suppressed KT-MT turnover. These defects coincide with KNL1-Mis12-Ndc80 network hypophosphorylation, reduced mitotic centromere-associated kinesin localization, and Aurora B T-loop phosphorylation at kinetochores. We further show that Ska requires its microtubule-binding capability to promote Aurora B activity in cells and stimulates Aurora B catalytic activity in vitro. Finally, we show that protein phosphatase 1 counteracts Aurora B activity to enable Ska kinetochore accumulation once biorientation is achieved. We propose that Ska promotes Aurora B activity to limit its own microtubule and kinetochore association and to ensure that KT-MT dynamics and stability fall within an optimal balance for biorientation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5057281PMC
http://dx.doi.org/10.1083/jcb.201603019DOI Listing

Publication Analysis

Top Keywords

aurora activity
20
aurora
10
ska complex
8
promotes aurora
8
chromosome biorientation
8
kt-mt dynamics
8
microtubule kinetochore
8
ska
6
activity
6
kt-mt
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!