First-row transition metals (Co, Ni, Cu and Zn) were successfully used in the preparation of activated carbons from wood biomass via microwave-assisted irradiation. Physical-chemical properties of the produced materials (MWAC) were studied by nitrogen adsorption-desorption curves, SEM, FTIR, UV-vis DRS and synchronous fluorescence spectroscopy, CHN elemental analysis, TGA/DTG, pH, hydrophobic properties, and total acidity and basicity groups. Results showed that the metals were bound successfully in different amounts with surface functional groups of the wood biomass through ion exchange and surface complexation interaction during the impregnation step. Zn and Cu formed the most complexes. MWAC impregnated with Zn showed higher pore volumes and surface areas, followed by Cu, Co and Ni, independently of the ratio used. As the metal : biomass ratio was increased from 0.5 to 2, the surface area of MWAC increased from 300 to 620mg for Co-MC, 260 to 381mg for Ni-MC, 449 to 765mg for Cu-MC and from 572 to 1780mg for Zn-MC. The samples showed high values of carbon contents and oxygen-containing groups. An adsorption experiment revealed that samples prepared using ZnCl showed the highest sorption capacities (q) for the tested adsorbates, followed by CuCl, CoCl and NiCl. These results matched with the surface areas and pore volumes trends, which were found to follow atomic number and melting point trends-Ni(II)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2016.09.070 | DOI Listing |
MethodsX
December 2024
Natural Resources Canada, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z1M5, Canada.
In light of the recent unprecedented wildfires in Canada and the potential for increasing burned areas in the future, there is a need to explore post-fire salvage harvest and restoration and the implications for greenhouse gas (GHG) emissions. Salvage logging and replanting initiatives offer a potential solution by regrowing forests more quickly while meeting societal demands for wood and bioenergy. This study presents a comprehensive modeling framework to estimate post-fire salvage biomass and net GHG emissions relative to a 'do-nothing' baseline for all of Canada's harvest-eligible forests.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
To reduce the environmental impact of plastics, an increasing number of high-performance sustainable materials have emerged. Among them, wood-based high-performance structural materials have gained growing attention due to their outstanding mechanical and thermal properties. Here, we introduce phosphate groups onto the wood veneers for surface nanofibrillation, effectively altering both the molecular structure and surface morphology of wood, which enhances the interactions between wood veneers and endows the wood with excellent fire resistance properties.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France.
While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (CHO) is used as a BB proxy to investigate these effects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
Recently, transparent wood (TW) has been considered for many energy-efficient building products, such as windows and decorations. However, the existing TW still faces issues with size and thickness, as well as problems with functional fillers affecting the optical and mechanical properties of TW, which limits its wide application in the window products. In this study, a wood composite material (WCM) with good optical, mechanical, and thermal insulation and UV-shielding properties was prepared by using delignified wood (DW), methyl methacrylate (MMA), and 4-vinylphenylboric acid (VPBA).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia.
The use of black alder (BA) bark biomass in rigid polyurethane (PUR) foam compositions was the main task of investigation. Extractive compounds isolated from the bark through hot water extraction were used as precursors for bio-polyol synthesis via acid-free liquefaction with the polyether polyol Lupranol 3300 and through oxypropylation with propylene carbonate. The OH functionality and composition of the polyols were analyzed via wet chemistry and FTIR spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!