The potent multifunctionality of human galectins is based on their modular structure in a not yet fully understood manner. A strategy to dissect the contributions of individual sequence stretches to lectin activity is based on engineering variants of the natural proteins, which are composed of novel combinations of distinct parts. On proof-of-principle level, we here describe the design of a hybrid constituted by the N-terminal tail of chimera-type galectin-3 and the Nterminal carbohydrate recognition domain of tandem-repeat-type galectin-8, its production, purification and its serine phosphorylation characteristic for galectin- 3's tail. As measured for the respective parental proteins, its binding to (neo)glycoproteins is specific for β-galactosides and inhibitable by lactose, with KD-value closer to galectin-8 than galectin-3. Cell surface staining indicated similarity of the hybrid's reactivity to O-glycans and sensitivity for sialylation to respective properties of tandem-repeattype galectin-8 and its N-terminal domain. Applied as histochemical tool on tissue sections of murine jejunum and epididymis, intense lactose-inhibitable signals were recorded intracellularly, with a distribution profile akin to that of galectin-3. Tested as agglutinin, the hybrid was potent, excelling wild-type control galectins. The chimera-type design can thus serve as platform for tuning crosslinking activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929866523666160930123421 | DOI Listing |
J Alzheimers Dis
January 2025
Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Alzheimer's disease (AD), the leading cause of dementia, is characterized by cognitive decline and the accumulation of amyloid-β (Aβ). It affects millions, with numbers expected to double by 2050. SMOC2, implicated in inflammation and fibrosis, may play a role in AD pathogenesis, particularly in microglial cell function, offering a potential therapeutic target.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
Fungi are one of the major components of the eukaryotic microbial community in marine ecosystems, playing a significant role in organic matter cycling and food web dynamics. However, the diversity and roles of fungi in marine sediments remain poorly documented. To elucidate the diversity and spatial distribution of fungal communities in the marine sediments of an estuary-coast continuum across three distinct salinity regions in Zhanjiang Bay, China, the variations in fungal diversity, abundance, community structure, and distribution in the sediments were investigated through the application of high-throughput amplicon sequencing using the internal transcribed spacer (ITS) primers.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Crystallography and Structural Biology, Consejo Superior de Investigaciones Científicas, Instituto de Química-Física "Blas Cabrera", Madrid 28006, Spain.
Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875) connected by a long linker.
View Article and Find Full Text PDFPlant Commun
December 2024
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. Electronic address:
Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) is the central enzyme for converting atmospheric CO into organic molecules, playing a crucial role in the global carbon cycle. In cyanobacteria and some chemoautotrophs, Rubisco complexes, along with carbonic anhydrase, are enclosed within specific proteinaceous microcompartments, known as carboxysomes. The polyhedral carboxysome shell ensures a dense packaging of Rubisco and creates a high-CO internal environment to facilitate the fixation of CO.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.
Porous coordination cages (PCCs), molecular analogs of metal-organic frameworks, offer modular platforms for studying the adsorption properties of small molecules, with coordinatively unsaturated metal centers playing a pivotal role in tuning these behaviors. In this work, we present the synthesis, activation, and detailed gas adsorption studies of second-row transition metal-based ML cuboctahedral cages, specifically Mo(bdc), Rh(bdc), and [Ru(bdc)]Cl. These materials represent rare examples of Mo-, Rh-, and Ru-based hybrid porous solids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!