In human spermatozoa, protein kinases have a role in the acrosome reaction (AR) induced by a variety of stimuli. However, there is disagreement or a lack of information regarding the role of protein kinases and phosphatases in the progesterone (P)-induced increase in intracellular calcium concentration ([Ca ] ). In addition, there are no studies regarding the role of Ser/Thr and Tyr phosphatases and there are contradictory results regarding the role of Tyr kinases in the P-induced acrosome reaction. Here, we performed a simultaneous evaluation of the involvement of protein kinases and phosphatases in the P-induced acrosome reaction and in the P-induced calcium influx. Motile spermatozoa were capacitated for 18 h and different aliquots were allocated to treated or control groups and then evaluated for their ability to undergo the acrosome reaction and to increase [Ca ] in response to P. The acrosome reaction was evaluated using Pisum sativum agglutinin (PSA)-FITC, and [Ca ] was evaluated using fura 2AM. At all of the concentrations tested, PKA inhibitors significantly reduced the percentage of the P-induced acrosome reaction (p < 0.001). However, only the highest concentrations of PKA inhibitors reduced the P-induced calcium influx; lower concentrations of PKA inhibitors did not affect it. Similar results were apparent for PKC inhibitors and for tyrosine kinase inhibitors. None of the Ser/Thr phosphatase inhibitors affected the P-induced acrosome reaction or the P-induced calcium influx, except for the PP2B inhibitors that significantly reduced the P-induced acrosome reaction without affecting calcium influx. Finally, the protein tyrosine phosphatase inhibitors significantly blocked the P-induced acrosome reaction and reduced the amplitude of the P-induced calcium transient (p < 0.001) as well as the amplitude of the plateau phase (p < 0.01). The data suggest that protein kinases and possibly PP2B have a role on the acrosome reaction at some point downstream of calcium entry and that Tyr phosphatases have a role on the acrosome reaction upstream of calcium entry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/andr.12234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!