Brain activation studies in humans have shown the dynamic nature of neuronal N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) based on changes in their MRS signals in response to stimulation. These studies demonstrated that upon visual stimulation there was a focal increase in cerebral blood flow (CBF) and a decrease in NAA or in the total of NAA and NAAG signals in the visual cortex, and that these changes were reversed upon cessation of stimulation. In the present study we have developed an animal model in order to explore the relationships between brain stimulation, neuronal activity, CBF and NAA. We use "designer receptor exclusively activated by designer drugs" (DREADDs) technology for site-specific neural activation, a local field potential electrophysiological method for measurement of changes in the rate of neuronal activity, functional MRS for measurement of changes in NAA and a blood oxygenation level-dependent (BOLD) MR technique for evaluating changes in CBF. We show that stimulation of the rat prefrontal cortex using DREADDs results in the following: (i) an increase in level of neuronal activity; (ii) an increase in BOLD and (iii) a decrease in the NAA signal. These findings show for the first time the tightly coupled relationships between stimulation, neuron activity, CBF and NAA dynamics in brain, and also provide the first demonstration of the novel inverse stimulation-NAA phenomenon in an animal model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123928PMC
http://dx.doi.org/10.1002/nbm.3629DOI Listing

Publication Analysis

Top Keywords

neuronal activity
16
blood flow
8
rat prefrontal
8
prefrontal cortex
8
decrease naa
8
animal model
8
activity cbf
8
cbf naa
8
measurement changes
8
naa
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!