Rock-derived overburden material is used as a topsoil substitute for reclamation of Appalachian coal mines. We evaluated five mixtures ( = 4 each) of sandstone (SS) and siltstone (SiS) overburden as topsoil substitutes for 25+ years to quantify changes in mine soil properties. The study area was planted only to tall fescue [ (Schreb.)], but over 50 herbaceous species invaded over time. Standing biomass was highest in early years (5.2-9.3 Mg ha in 1983) and was strongly affected by rock type (SS > SiS), declined significantly by 1989 (1.5-2.4 Mg ha), and then increased again (2×) by 2008. However, there was no long-term rock type effect on standing biomass. Rock fragments and texture differed after 26 yr, with fewer rock fragments in the SS-dominated mixtures (53 vs. 77% in SiS) and lower sand and higher clay in the SiS-dominated mixtures. Soil pH initially ranged from 5.45 (SS) to 7.45 (SiS), dropped for several years, increased in all SiS mixes, and then slowly declined again to 5.65 (SS) to 6.46 (SiS) over the final 15 yr. Total N, organic matter, and cation exchange capacity increased with time, and extractable P decreased. Chemical weathering was most apparent initially, but physical weathering of rock fragments and changes in texture continued throughout the study period. Influences of original rock mixtures remained apparent after 25+ yr in both physical and chemical properties of these mine soils, which remained much coarser than local native soils but were higher in pH, exchangeable cations, and extractable P.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2015.10.0540 | DOI Listing |
Background And Aims: Sarcoidosis is a multisystem disorder characterized by nonnecrotizing granulomas. Studies suggest 20%-70% of patients with sarcoidosis have abnormal liver chemistries or abdominal imaging. Hepatic sarcoidosis may be complicated by portal hypertension (portal HTN) with or without cirrhosis.
View Article and Find Full Text PDFMicroorganisms
December 2024
Sanya Institute of South China Sea Geology, Guangzhou Marine Geological Survey, China Geological Survey, Sanya 572025, China.
In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as follows: (1) Biogenic gas generation is significantly affected by thermal state and organic matter type. Low temperature is a primary reason for gas hydrate occurrence in shallower sediments when sufficient methane gas is present.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Background: To extend the practicality of liquid biopsy beyond the historical HPV circulating tumor DNA (ctDNA) assays, we evaluated the clinical relevance of a novel next-generation sequencing HPV ctDNA assay in patients with locally advanced and metastatic squamous cell cancer of the anal canal (mSCCA).
Methods: ctDNA isolated from the plasma of patients with mSCCA was sequenced using a 1.4 Mb hybrid-capture target-enrichment panel covering the whole genome sequences of all 193 HPV types.
Antioxidants (Basel)
December 2024
Department of Oncology, Lombardi Comprehensive Cancer Centre, Georgetown University Medical Center, Washington, DC 20057, USA.
Exposure to ionizing radiation disrupts metabolic pathways and causes oxidative stress, which can lead to organ damage. In this study, urinary metabolites from mice exposed to high-dose and low-dose whole-body irradiation (WBI HDR, WBI LDR) or partial-body irradiation (PBI BM2.5) were analyzed using targeted and untargeted metabolomics approaches.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!