Intermittent hypoxia (IH) recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA). Recently, we found that IH increased bone mineral density (BMD) in the inter-radicular alveolar bone (reflecting enhanced osteogenesis) in the mandibular first molar (M1) region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF) pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF) in periodontal ligament (PDL) tissues. Seven-week-old male Sprague-Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT). Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2). The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5025444PMC
http://dx.doi.org/10.3389/fphys.2016.00416DOI Listing

Publication Analysis

Top Keywords

alveolar bone
16
bone proper
12
growing rats
12
null hypothesis
12
intermittent hypoxia
8
hypoxia-inducible factor
8
factor vegf
8
enhanced osteogenesis
8
osteogenesis mandibular
8
hif pathway
8

Similar Publications

Post-translational modifications (PTMs) are critical regulators of protein function and cellular signaling. While histone deacetylation by histone deacetylases (HDACs) is well established, the role of specific HDACs in modulating non-histone protein PTMs, particularly in an infectious context, is poorly understood. Here, we reveal a pivotal role for HDAC6 in orchestrating periodontal inflammation through its dual regulatory effects on FoxO1 acetylation and phosphorylation.

View Article and Find Full Text PDF

Immunomodulation has emerged as a promising strategy for promoting bone regeneration. However, designing osteoimmunomodulatory biomaterial that can respond to mechanical stress in the unique microenvironment of alveolar bone under continuous occlusal stress remains a significant challenge. Herein, a wireless piezoelectric stimulation system, namely, piezoelectric hydrogel incorporating BaTiO nanoparticles (BTO NPs), is successfully developed to generate piezoelectric potentials for modulating macrophage reprogramming.

View Article and Find Full Text PDF

Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

METTL3-mediated m6A modifications of NLRP3 accelerate alveolar bone resorption through enhancing macrophage pyroptosis.

Cell Signal

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Periodontitis (PD) is twice as prevalent in diabetics compared to nondiabetics, and diabetes-associated PD is characterized by increased inflammation and aggravated tissue damage. Pyroptosis has recently been implicated in diabetes-associated PD; however, the underlying mechanisms remain largely unknown, resulting in a lack of effective treatments. In this study, we investigated the role of methyltransferase-like 3 (METTL3) in macrophage pyroptosis and found that it inhibits the osteogenic differentiation of osteoblasts via pyroptotic macrophages in a diabetes-associated periodontitis mouse model.

View Article and Find Full Text PDF

What is the role of second molars in leveling the curve of Spee? A finite element analysis study.

Am J Orthod Dentofacial Orthop

December 2024

Department of Orthodontics, Faculty of Dentistry, Ege University, Izmir, Turkey. Electronic address:

Introduction: This study aimed to assess the effect of the mandibular second molars on the stress distribution and initial displacements during leveling the curve of Spee using different archwire thicknesses and materials by means of finite element analysis.

Methods: After construction of all anatomic structures, including the mandibular alveolar bone, periodontal ligament, and dentition, 0.022-in slot brackets and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!