Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant is transferable to other plants such as We extracted the co-orthologues of genes coding for major pathway enzymes in from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in . Altogether, this information allowed the assignment of putative functional equivalents between and but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038615 | PMC |
http://dx.doi.org/10.4137/BBI.S38425 | DOI Listing |
Biosens Bioelectron
January 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China. Electronic address:
As an emerging class of extended crystalline organic materials, covalent organic framework (COF)-based aggregation-induced emission luminogen (AIE-gen) exhibited encouraging emissive properties. In this work, 4',4'',4‴,4‴'-(1,1,2,2-Ethenetetrayl)tetra(4-biphenylcarbaldehyde) (ETBC) as AIEgen was used to prepare AIE-COF (ET-COF-COOH) luminescent nanoprobe. ETBC and 1,3,5-Tris(4-aminophenyl)benzene (TAPB) had an extended π electronic system that allowed electron delocalization and overlapping transport.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
Osteosarcoma (OS) is a commonly observed malignant tumor in orthopedics that has a very poor prognosis. The endosomal sorting complex required for transport (ESCRT) is important for the development and progression of cancer and may be a significant target for cancer therapy. First, we built a prognostic signature using 7 ESCRT-related genes (ERGs) to predict OS patient prognosis.
View Article and Find Full Text PDFSci Rep
January 2025
School of Rail Transportation, Shandong Jiaotong University, Jinan, 250357, China.
In the task of pavement distress recognition and classification, the complexity of the pavement environment, the small proportion of distresses in images, significant variation in distress scales, and the influence of features such as vehicles and traffic signs in the data make distress feature extraction challenging. This paper proposes a spectrum focus transformer (SFT) layer, which processes the signal spectrum and focuses on important frequency components. Initially, by thoroughly analyzing the frequency domain characteristics of image data, frequency value distribution information is obtained to achieve fine-tuning of different frequency components.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Orthopaedics, Tianjin Hospital, Tianjin University, Tianjin, China.
Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
Voltage-gated Ca2+ channels (VGCCs) are highly expressed throughout numerous biological systems and play critical roles in synaptic transmission, cardiac excitation, and muscle contraction. To perform these various functions, VGCCs are highly regulated. Inactivation comprises a critical mechanism controlling the entry of Ca2+ through these channels and constitutes an important means to regulate cellular excitability, shape action potentials, control intracellular Ca2+ levels, and contribute to long-term potentiation and depression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!