Owing to the limited spatio-temporal resolution of display devices, dynamic holographic three-dimensional displays suffer from a critical trade-off between the display size and the visual angle. Here we show a projection-type holographic three-dimensional display, in which a digitally designed holographic optical element and a digital holographic projection technique are combined to increase both factors at the same time. In the experiment, the enlarged holographic image, which is twice as large as the original display device, projected on the screen of the digitally designed holographic optical element was concentrated at the target observation area so as to increase the visual angle, which is six times as large as that for a general holographic display. Because the display size and the visual angle can be designed independently, the proposed system will accelerate the adoption of holographic three-dimensional displays in industrial applications, such as digital signage, in-car head-up displays, smart-glasses and head-mounted displays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5063955 | PMC |
http://dx.doi.org/10.1038/ncomms12954 | DOI Listing |
Computer-generated holography (CGH) is an advanced technology for three-dimensional (3D) displays. While the stochastic gradient descent (SGD) method is effective for holographic optimization, its application to holographic video displays is computationally expensive, as each frame requires separate optimization. To address this, we propose a novel, to the best of our knowledge, clustering optimization strategy to accelerate the SGD process for holographic video displays.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, 576104 Karnataka, India.
Volumetric additive manufacturing (VAM) is revolutionizing the field of cell printing by enabling the rapid creation of complex three-dimensional cellular structures that mimic natural tissues. This paper explores the advantages and limitations of various VAM techniques, such as holographic lithography, digital light processing, and volumetric projection, while addressing their suitability across diverse industrial applications. Despite the significant potential of VAM, challenges related to regulatory compliance and scalability persist, particularly in the context of bioprinted tissues.
View Article and Find Full Text PDFNano Lett
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
The complete manipulation of Jones matrix phase-channels using metasurfaces brings forth unparalleled possibilities across diverse wavefront modulation applications. Traditionally, achieving independent control over all four phase-channels usually involves the introduction of chirality with multilayer or three-dimensional metasurfaces. Here, we present a general chirality-free method that relies on polarization base transformation with a planar minimalist metasurface, effectively decoupling the four Jones matrix phase-channels, thereby unleashing the fundamental boundaries imposed by conventional linear or circular polarization bases.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
Metasurface with natural static structure limits the development of dynamic metasurface holographic display with rapid response and broadband. Currently, liquid crystal (LC) was integrated onto the metasurface to convert the passive metasuface into an active one. But, majority of LC-assisted active metasurfaces often exhibit trade-offs among degree of freedom (DoF, typically less than 2), information capacity, response speed, and crosstalk.
View Article and Find Full Text PDFBiomed Phys Eng Express
December 2024
CSE, Islamic University of Science and Technology, Awantipora, Awantipora, Jammu and Kashmir, 192122, INDIA.
Medical imaging is pivotal in early disease diagnosis, providing essential insights that enable timely and accurate detection of health anomalies. Traditional imaging techniques, such as Magnetic Resonance Imaging (MRI), Computer Tomography (CT), ultrasound, and Positron Emission Tomography (PET), offer vital insights into three-dimensional structures but frequently fall short of delivering a comprehensive and detailed anatomical analysis, capturing only amplitude details. Three-dimensional holography microscopic medical imaging provides a promising solution by capturing the amplitude (brightness) and phase (structural information) details of biological structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!