A 17 GHz molecular rectifier.

Nat Commun

Institute of Electronics, Microelectronics and Nanotechnology, CNRS and University Lille 1, Physics Department, Avenue Poincaré, CS60069, 59652 Villeneuve d'Ascq, France.

Published: October 2016

Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059435PMC
http://dx.doi.org/10.1038/ncomms12850DOI Listing

Publication Analysis

Top Keywords

molecular diodes
12
direct current
8
molecular
6
diodes
5
17 ghz molecular
4
molecular rectifier
4
rectifier molecular
4
molecular electronics
4
electronics originally
4
originally proposed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!