Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer.

Proc Natl Acad Sci U S A

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095; Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095

Published: October 2016

Metastatic castration-resistant prostate cancer (CRPC) is the primary cause of prostate cancer-specific mortality. Defining new mechanisms that can predict recurrence and drive lethal CRPC is critical. Here, we demonstrate that localized high-risk prostate cancer and metastatic CRPC, but not benign prostate tissues or low/intermediate-risk prostate cancer, express high levels of nuclear Notch homolog 1, translocation-associated (Notch1) receptor intracellular domain. Chronic activation of Notch1 synergizes with multiple oncogenic pathways altered in early disease to promote the development of prostate adenocarcinoma. These tumors display features of epithelial-to-mesenchymal transition, a cellular state associated with increased tumor aggressiveness. Consistent with its activation in clinical CRPC, tumors driven by Notch1 intracellular domain in combination with multiple pathways altered in prostate cancer are metastatic and resistant to androgen deprivation. Our study provides functional evidence that the Notch1 signaling axis synergizes with alternative pathways in promoting metastatic CRPC and may represent a new therapeutic target for advanced prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5081658PMC
http://dx.doi.org/10.1073/pnas.1614529113DOI Listing

Publication Analysis

Top Keywords

prostate cancer
24
cancer metastatic
12
prostate
9
activation notch1
8
notch1 synergizes
8
synergizes multiple
8
multiple pathways
8
pathways promoting
8
castration-resistant prostate
8
metastatic crpc
8

Similar Publications

Prostate cancer is the most common type after the age of fifty. It affects males and affects the prostate gland, which protects the function of sperm by producing semen. The current study was designed to evaluate prostate cancer infection effects on some biomarkers such as irisin, Tumor necrosis factor-TNF-α, prostate acid phosphates -PAP, Glutathione-GSH, malondialdehyde-MDA, urea, and creatinine.

View Article and Find Full Text PDF

ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.

View Article and Find Full Text PDF

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

…But Words Will Never Hurt Me.

Eur Urol

January 2025

Eastern Health Clinical School, Monash University, Melbourne, Australia; Cancer Services, Eastern Health, Melbourne, Australia; Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!