A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adjusting for Publication Bias in Meta-Analysis: An Evaluation of Selection Methods and Some Cautionary Notes. | LitMetric

We review and evaluate selection methods, a prominent class of techniques first proposed by Hedges (1984) that assess and adjust for publication bias in meta-analysis, via an extensive simulation study. Our simulation covers both restrictive settings as well as more realistic settings and proceeds across multiple metrics that assess different aspects of model performance. This evaluation is timely in light of two recently proposed approaches, the so-called p-curve and p-uniform approaches, that can be viewed as alternative implementations of the original Hedges selection method approach. We find that the p-curve and p-uniform approaches perform reasonably well but not as well as the original Hedges approach in the restrictive setting for which all three were designed. We also find they perform poorly in more realistic settings, whereas variants of the Hedges approach perform well. We conclude by urging caution in the application of selection methods: Given the idealistic model assumptions underlying selection methods and the sensitivity of population average effect size estimates to them, we advocate that selection methods should be used less for obtaining a single estimate that purports to adjust for publication bias ex post and more for sensitivity analysis-that is, exploring the range of estimates that result from assuming different forms of and severity of publication bias.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1745691616662243DOI Listing

Publication Analysis

Top Keywords

selection methods
20
publication bias
16
bias meta-analysis
8
adjust publication
8
realistic settings
8
p-curve p-uniform
8
p-uniform approaches
8
original hedges
8
hedges approach
8
selection
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!