Intermediate filaments (IF) are major constituents of the cytoskeleton of metazoan cells. They are not only responsible for the mechanical properties but also for various physiological activities in different cells and tissues. The building blocks of IFs are extended coiled-coil-forming proteins exhibiting a characteristic central α-helical domain ("rod"). The fundamental principles of the filament assembly mechanism and the network formation have been widely elucidated for the cytoplasmic IF protein vimentin. Also, a comprehensive structural model for the tetrameric complex of vimentin has been obtained by X-ray crystallography in combination with various biochemical and biophysical techniques. To extend these static data and to investigate the dynamic properties of the full-length proteins in solution during the various assembly steps, we analyzed the patterns of hydrogen-deuterium exchange in vimentin and in four variants carrying point mutations in the IF consensus motifs present at either end of the α-helical rod that cause an assembly arrest at the unit-length filament (ULF) stage. The results yielded unique insights into the structural properties of subdomains within the full-length vimentin, in particular in regions of contact in α-helical and linker segments that stabilize different oligomeric forms such as tetramers, ULFs, and mature filaments. Moreover, hydrogen-deuterium exchange analysis of the point-mutated variants directly demonstrated the active role of the IF consensus motifs in the oligomerization mechanism of tetramers during ULF formation. Ultimately, using molecular dynamics simulation procedures, we provide a structural model for the subdomain-mediated tetramer/tetramer interaction via "cross-coiling" as the first step of the assembly process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5122765 | PMC |
http://dx.doi.org/10.1074/jbc.M116.748145 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080.
The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a subcomplex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
National Measurement Laboratory, LGC, Queens Road, TW11 0LY Teddington, U.K.
Neurofilament light chain (NfL) is an early nonspecific biomarker in neurodegenerative diseases and traumatic brain injury, indicating axonal damage. This work describes the detailed structural characterization of a selected primary calibrator with the potential to be used in future reference measurement procedure (RMP) development for the accurate quantification of NfL. As a part of the described workflow, the sequence, higher-order structure as well as solvent accessibility, and hydrogen-bonding profile were assessed under three different conditions in KPBS, artificial cerebrospinal fluid, and artificial cerebrospinal fluid in the presence of human serum albumin.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Donor-specific antibodies (DSAs) targeting mismatched human leukocyte antigen (HLA) molecules are one of the principal threats to long-term graft survival in solid organ transplantation. However, many patients with long-term circulating DSAs do not manifest rejection responses, suggesting a degree of heterogeneity in their pathogenicity and related functional activity. Immunologic risk stratification of transplant recipients is complicated by challenges intrinsic to defining alloantibody responses that are potentially pathogenic versus those that are not.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!