AI Article Synopsis

Article Abstract

Inflammatory pain and neuropathic pain are major clinical health issues that represent considerable social and economic burden worldwide. In the present study, we investigated the anti-nociceptive efficacy of delivery of human proenkephalin gene by a plasmid DNA vector (pVAX1-PENK) on complete Freund's adjuvant (CFA) induced inflammatory pain and spared nerve injury (SNI) induced neuropathic pain in mice. Mice were intramuscularly or intrathecally administered pVAX1 or pVAX1-PENK, respectively. Pain thresholds in the pVAX1-PENK treated mice were significantly higher at day 3, then reached a peak at day 7 and lasted until day 28 after gene transfer, and the analgesic effect of pVAX1-PENK was blocked with naloxone hydrochloride. In contrast, pVAX1 treated mice did not significantly improve pain thresholds. These results indicate that peripheral or spinal delivery of a plasmid encoding human proenkephalin gene provides a potential therapeutic strategy for inflammatory pain and neuropathic pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2016.09.040DOI Listing

Publication Analysis

Top Keywords

human proenkephalin
12
proenkephalin gene
12
inflammatory pain
12
neuropathic pain
12
plasmid dna
8
encoding human
8
pain
8
pain neuropathic
8
pain thresholds
8
treated mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!