We identified a novel spontaneous mutant mouse showing motor symptoms that are similar to those of the dystonia musculorum (dt) mouse. The observations suggested that the mutant mice inherited the mild dt phenotype as an autosomal recessive trait. Linkage analysis showed that the causative gene was located near D1Mit373 and D1Mit410 microsatellite markers on chromosome 1, which are close to the dystonin (Dst) gene locus. To investigate whether Dst is the causative gene of the novel mutant phenotype, we crossed the mutant with Dst gene trap (Dst) mice. Compound heterozygotes showed a typical dt phenotype with sensory degeneration and progressive motor symptoms. DNA sequencing analysis identified a nonsense mutation within the spectrin repeats of the plakin domain. The novel mutant allele was named dt. Motor abnormalities in homozygous dt/dt mice are not as severe as homozygous Dst/Dst mice. Histological analyses showed abnormal neurofilament (NF) accumulation in the nervous system of homozygous dt/dt mice, which is characteristic of the dt phenotype. We mapped the distribution of abnormal NF-accumulated neurons in the brain and found that they were located specifically in the brainstem, spinal cord, and in regions such as the vestibular nucleus, reticular nucleus, and red nucleus, which are implicated in posture and motor coordination pathways. The quantification of abnormal NF accumulation in the cytoplasm and spheroids (axons) of neurons showed that abnormal NF immunoreactivity was lower in homozygous dt/dt mice than in homozygous Dst/Dst mice. Therefore, we have identified a novel hypomorphic allele of dt, which causes histological abnormalities in the central nervous system that may account for the abnormal motor phenotype. This novel spontaneously occurring mutant may become a good model of hereditary sensory and autonomic neuropathy type 6, which is caused by mutations in the human DST gene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2016.09.016DOI Listing

Publication Analysis

Top Keywords

nervous system
12
dst gene
12
homozygous dt/dt
12
dt/dt mice
12
dystonia musculorum
8
mice
8
mutant mice
8
central nervous
8
identified novel
8
motor symptoms
8

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Previous research has shown that smoking tobacco is associated with changes or differences in brain volume and cortical thickness, resulting in a smaller brain volume and decreased cortical thickness in smokers compared with non-smokers. However, the effects of smokeless tobacco on brain volume and cortical thickness remain unclear. This study aimed to investigate whether the use of shammah, a nicotine-containing smokeless tobacco popular in Middle Eastern countries, is associated with differences in brain volume and thickness compared with non-users and to assess the influence of shammah quantity and type on these effects.

View Article and Find Full Text PDF

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!