Our previous study showed that treatment with levetiracetam (LEV) after status epilepticus (SE) termination by diazepam might prevent the development of spontaneous recurrent seizures via the inhibition of neurotoxicity induced by brain edema events. In the present study, we determined the possible molecular and cellular mechanisms of LEV treatment after termination of SE. To assess the effect of LEV against the brain alterations after SE, we focused on blood-brain barrier (BBB) dysfunction associated with angiogenesis and brain inflammation. The consecutive treatment of LEV inhibited the temporarily increased BBB leakage in the hippocampus two days after SE. At the same time point, the LEV treatment significantly inhibited the increase in the number of CD31-positive endothelial immature cells and in the expression of angiogenic factors. These findings suggested that the increase in neovascularization led to an increase in BBB permeability by SE-induced BBB failure, and these brain alterations were prevented by LEV treatment. Furthermore, in the acute phase of the latent period, pro-inflammatory responses for epileptogenic targets in microglia and astrocytes of the hippocampus activated, and these upregulations of pro-inflammatory-related molecules were inhibited by LEV treatment. These findings suggest that LEV is likely involved in neuroprotection via anti-angiogenesis and anti-inflammatory activities against BBB dysfunction in the acute phase of epileptogenesis after SE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2016.09.038DOI Listing

Publication Analysis

Top Keywords

lev treatment
16
acute phase
12
blood-brain barrier
8
associated angiogenesis
8
phase epileptogenesis
8
lev
8
brain alterations
8
bbb dysfunction
8
treatment
6
bbb
5

Similar Publications

Tobacco ( L.) is an economically important crop in China. In April 2024, field tobacco (cv.

View Article and Find Full Text PDF

T-lineage acute lymphoblastic leukemia (ALL) is an aggressive cancer comprising diverse subtypes that are challenging to stratify using conventional immunophenotyping. To gain insights into subset-specific therapeutic vulnerabilities, we performed an integrative multiomics analysis of bone marrow samples from newly diagnosed T cell ALL, early T cell precursor ALL, and T/myeloid mixed phenotype acute leukemia. Leveraging cellular indexing of transcriptomes and epitopes in conjunction with T cell receptor sequencing, we identified a subset of patient samples characterized by activation of inflammatory and stem gene programs.

View Article and Find Full Text PDF

is increasingly resistant to antibiotics, significantly lowering eradication rates and posing a major public health challenge. This study investigated the distribution of antibiotic-resistant phenotypes and genotypes of in Hainan Province. It determined the minimum inhibitory concentrations (MICs) of six antibiotics using the E-test method and detected resistance genes via Sanger sequencing.

View Article and Find Full Text PDF

Herein, we present a case of idiopathic generalized epilepsy (IGE) manifesting as de novo late-onset absence status epilepticus (ASE) following mild coronavirus disease 2019 (COVID-19). A woman in her 40s presented with persistent 3-5.5 Hz generalized spike-wave complexes (SWCs) on electroencephalography (EEG).

View Article and Find Full Text PDF

Enhanced tetracycline degradation using carbonized PEI-grafted lignin microspheres supported Fe-loading catalyst across a wide pH range in Fenton-like reactions.

Int J Biol Macromol

December 2024

School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China. Electronic address:

Traditional homogeneous Fenton systems face limitations, including a narrow pH range, potential secondary pollution, and poor repeatability. In this study, these bottlenecks in tetracycline wastewater treatment were addressed with using carbonized porous polyethyleneimine-grafted lignin microspheres (PLMs) supported Fe-loading catalysts (PLMs/Fe-C). An optimized PLMs/Fe-C catalyst under specific conditions (carbonization temperature: 350 °C, PLMs: Fe = 1:1, and alkali lignin: PEI = 1:4) was developed, which proved to be an efficient Fenton-like catalyst for tetracycline (TC) degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!