1. The magnitude of the sensations produced by small increases in thermal stimuli superimposed on noxious levels of heat stimulation was studied by the use of a simple reaction-time task. Noxious thermal stimuli were presented on the face of three monkeys, the forearm volar surface of three monkeys, and the face of four human subjects. The subject, either monkey or human, initiated a trial by pressing an illuminated button. Subsequently, a contact thermode increased in temperature from a base line of 38 degree C to temperatures of 44, 45, 46, or 47 degrees C (T1). After a variable time period lasting between 4 and 10 s, the thermode temperature increased an additional 0.1, 0.2, 0.4, 0.6, or 0.8 degrees C (T2). The subject was required to release the button as soon as the T2 stimulus was detected. Detection latency, expressed as its reciprocal, detection speed, was defined as the time interval between the onset of T2 and the release of the button. 2. The monkeys' detection speed to stimuli presented on the upper lip was dependent on the intensity of both T1 and T2. Increases in the intensity of T2 between 0.1 and 0.8 degrees C produced faster detection speeds. In general, as the intensity of T1 increased, the detection speed increased to identical T2 stimuli. The monkeys' T2-detection threshold was also dependent on the intensity of T1. 3. The psychophysical functions obtained from stimulation of the monkey's face were compared with those obtained from the volar surface of the monkey's forearm. Whereas the T2 thresholds obtained from stimulation of the monkey's forearm and face were similar, the psychophysical functions obtained from stimulation of the face were significantly steeper than those obtained from stimulation of the forearm. 4. The humans' detection speed of T2 stimuli presented on the face was monotonically related to the intensity of T2 and was dependent on the level of T1. The psychophysical functions obtained from the human's face were equivalent to those obtained from the monkey's faces. 5. A cross-modality matching procedure was used to examine the perceived intensity of pain sensation produced by T2 stimuli in human subjects. The magnitude estimates of these stimuli were dependent on the level of T1, as well as the intensity of T2. Detection speed, plotted as a function of the estimated magnitude of pain, independent of T1 and T2 temperature, was best fit by a logarithmic function.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1989.62.2.429 | DOI Listing |
Int J Med Inform
January 2025
University of Coimbra, Faculty of Medicine, Coimbra, Portugal; Department of Gastroenterology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal. Electronic address:
Background: The wireless capsule endoscope (CE) is a valuable diagnostic tool in gastroenterology, offering a safe and minimally invasive visualization of the gastrointestinal tract. One of the few drawbacks identified by the gastroenterology community is the time-consuming task of analyzing CE videos.
Objectives: This article investigates the feasibility of a computer-aided diagnostic method to speed up CE video analysis.
Sens Diagn
December 2024
Department of Bioengineering, Rice University Houston TX 77030 USA
CRISPR-Cas-based lateral flow assays (LFAs) have emerged as a promising diagnostic tool for ultrasensitive detection of nucleic acids, offering improved speed, simplicity and cost-effectiveness compared to polymerase chain reaction (PCR)-based assays. However, visual interpretation of CRISPR-Cas-based LFA test results is prone to human error, potentially leading to false-positive or false-negative outcomes when analyzing test/control lines. To address this limitation, we have developed two neural network models: one based on a fully convolutional neural network and the other on a lightweight mobile-optimized neural network for automated interpretation of CRISPR-Cas-based LFA test results.
View Article and Find Full Text PDFHeliyon
July 2024
College of Engineering and IT, University of Dubai, Academic City, 14143, Dubai, United Arab Emirates.
This study proposes a hierarchical automated methodology for detecting brain tumors in Magnetic Resonance Imaging (MRI), focusing on preprocessing images to improve quality and eliminate artifacts or noise. A modified Extreme Learning Machine is then used to diagnose brain tumors that are integrated with the Modified Sailfish optimizer to enhance its performance. The Modified Sailfish optimizer is a metaheuristic algorithm known for efficiently navigating optimization landscapes and enhancing convergence speed.
View Article and Find Full Text PDFIn this paper, we propose an integrated method for windowing and matched filtering in the analog domain based on microwave photonic technology, which utilizes dispersion regulation of optical waveguide to achieve the windowing processing of broadband signals in the optical domain and the surface acoustic wave filter (SAWF) to achieve the following matched filtering processing in the radio frequency (RF) domain, thus realizing their integration processing in the analog domain. The proposed method is validated by simulation and experiment, in which the integrated processing of matched filtering and windowing in the analog domain for a linear frequency modulation (LFM) signal with a bandwidth of 1 GHz is carried out and the peak to sidelobe ratio (PSLR) of the output signal is -19.55 dB and the mainlobe width (MLW) broadens to 0.
View Article and Find Full Text PDFFiber Bragg grating (FBG) accelerometers are extensively utilized across various industries. For a high-performance FBG accelerometer interrogator, achieving low cost, wide range, multi-channel capability, high precision, and high-speed demodulation is critical. This paper proposes a chip-level wavelength demodulation method for FBG accelerometers utilizing a cascaded micro-ring resonator (MRR) array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!