Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast.

Cell Chem Biol

Université Grenoble Alpes, Laboratoire Technologies de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble (TIMC-IMAG), 38000 Grenoble, France; Centre National de Recherche Scientifique (CNRS), TIMC-IMAG, 38000 Grenoble, France. Electronic address:

Published: October 2016

Coenzyme Q (Q) is a redox lipid that is central for the energetic metabolism of eukaryotes. The biosynthesis of Q from the aromatic precursor 4-hydroxybenzoic acid (4-HB) is understood fairly well. However, biosynthetic details of how 4-HB is produced from tyrosine remain elusive. Here, we provide key insights into this long-standing biosynthetic problem by uncovering molecular details of the first and last reactions of the pathway in the yeast Saccharomyces cerevisiae, namely the deamination of tyrosine to 4-hydroxyphenylpyruvate by Aro8 and Aro9, and the oxidation of 4-hydroxybenzaldehyde to 4-HB by Hfd1. Inactivation of the HFD1 gene in yeast resulted in Q deficiency, which was rescued by the human enzyme ALDH3A1. This suggests that a similar pathway operates in animals, including humans, and led us to propose that patients with genetically unassigned Q deficiency should be screened for mutations in aldehyde dehydrogenase genes, especially ALDH3A1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2016.08.008DOI Listing

Publication Analysis

Top Keywords

pathway yeast
8
mechanistic details
4
details early
4
early steps
4
steps coenzyme
4
coenzyme biosynthesis
4
biosynthesis pathway
4
yeast coenzyme
4
coenzyme redox
4
redox lipid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!