Oxidation of critical signaling protein cysteines regulated by HO has been considered to involve sulfenic acid (RSOH) formation. RSOH may subsequently form either a sulfenyl amide (RSNHR') with a neighboring amide, or a mixed disulfide (RSSR') with another protein cysteine or glutathione. Previous studies have claimed that RSOH can be detected as an adduct (e.g., with 5,5-dimethylcyclohexane-1,3-dione; dimedone). Here, kinetic data are discussed which indicate that few proteins can form RSOH under physiological signaling conditions. We also present experimental evidence that indicates that (1) dimedone reacts rapidly with sulfenyl amides, and more rapidly than with sulfenic acids, and (2) that disulfides can react reversibly with amides to form sulfenyl amides. As some proteins are more stable as the sulfenyl amide than as a glutathionylated species, the former may account for some of the species previously identified as the "sulfenome" - the cellular complement of reversibly-oxidized thiol proteins generated via sulfenic acids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5318241PMC
http://dx.doi.org/10.1016/j.abb.2016.09.013DOI Listing

Publication Analysis

Top Keywords

protein cysteine
8
sulfenic acid
8
form sulfenyl
8
sulfenyl amide
8
sulfenyl amides
8
sulfenic acids
8
cysteine oxidation
4
oxidation redox
4
redox signaling
4
signaling caveats
4

Similar Publications

Preparation of ethynylsulfonamides and study of their reactivity with nucleophilic amino acids.

Org Biomol Chem

January 2025

Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, 3-2-1 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.

The development of covalent drugs, particularly those utilizing Michael acceptors, has garnered significant attention in recent pharmaceutical research due to the ability of such molecules to irreversibly inhibit protein function. This study focusses on the synthesis and evaluation of ethynylsulfonamides, which are predicted to have superior covalent binding ability, metabolic stability, and water solubility compared to traditional amides. We developed a straightforward synthesis method for ethynylsulfonamides and comprehensively evaluated the covalent binding abilities of these compounds using NMR with various nucleophilic amino acids in different solvents.

View Article and Find Full Text PDF

Present study aimed at improving the immune and antioxidant response of Pacific white shrimp (Litopenaeus vannamei) cultured at high stocking density fed with 0.2% supplementation of lauric acid (LA) and N-acetyl-L-cysteine (NAC). Shrimp (initial average weight = 0.

View Article and Find Full Text PDF

In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). There is a significant delay in diagnosing MS as the symptoms and tests overlap with other diseases. Blood-based biomarkers, which quantify fragments of proteins involved in MS pathophysiology, have the potential as diagnostic biomarkers.

View Article and Find Full Text PDF

Itaconate transporter SLC13A3 confers immunotherapy resistance via alkylation-mediated stabilization of PD-L1.

Cell Metab

January 2025

Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China. Electronic address:

Itaconate is a metabolite catalyzed by cis-aconitate decarboxylase (ACOD1), which is mainly produced by activated macrophages and secreted into the extracellular environment to exert complex bioactivity. In the tumor microenvironment, itaconate is concentrated and induces an immunosuppressive response. However, whether itaconate can be taken up by tumor cells and its mechanism of action remain largely unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!